
Chapter 1. Introduction to PushButtonCMS CMS Applications

Welcome to the exploration of CMS applications using PushButtonCMS!

A CMS application is a platform designed to simplify the creation, management, and delivery of digital content on the web.
Unlike traditional static websites, a CMS application offers a dynamic environment that allows for easy content manipulation
and organization.

In the context of PushButtonCMS, an application usually composed of two distinct modules, each serving a specific purpose:

1. Visitor-Facing Module: This module forms the public-facing aspect of the application. It caters to the audience
visiting the website, offering a seamless and engaging experience. Content displayed here is accessible to all visitors.

2. Registered/Privileged User Module: The second module operates as the secured section of the application, available
to registered or privileged users. It encompasses functionalities and content reserved for specific user groups,
providing a more tailored and comprehensive experience.

Within these modules, various additional files contribute to the application's functionality and appearance:

Templates: Structured layouts defining the visual presentation of content.
CSS and JavaScript Files: Style and interactivity enhancements for a richer user experience.
Helper Libraries: Additional tools aiding in the development and customization of modules.

Understanding these fundamental components sets the stage for comprehending how PushButtonCMS empowers developers
and users to create versatile, engaging, and secure CMS applications. In the upcoming chapters, we'll delve deeper into the
technical aspects of building and managing these modules within PushButtonCMS.

Sample Poll Application

Throughout this tutorial, we'll create a sample poll application as an illustrative example. This application will showcase the
functionalities of PushButtonCMS in building a user-friendly poll creation and management system. We'll use this example
to explore various aspects of CMS application development.

In the upcoming chapters, we'll delve deeper into the technical aspects of building and managing these modules within
PushButtonCMS.

Chapter 2. Create Your First Module

This setup will create a basic module within PushButtonCMS. It is just a regular Hello World application - we will add the
magic later. It is a visitor facing module, so we have no any restrictions here.

File Structure:

Create the following files in your PushButtonCMS project:

modules/polls.php - file for controllers of the module
themes/default/polls.tpl - file for views of the module

Controllers file

File: modules/polls.php

Explanation:

A controller is created to activate upon triggering an associated action. Controller is typically a callback function, executing
instantly upon the activation of the current action. In our example we created a controller for view action.

pb_on_action('view', function () { ... });: Associates the 'view' action with a callback controller
function.

Usually a callback function should set a page title, define which template should be used to display the data and provide a
data to the template.

pb_title('Polls title');: Sets the title of the page.
pb_template('polls');: Specifies the template file polls.tpl. Don't use .tpl extension as it will be
added by default.
pb_set_tpl_var('name', 'world');: Sets a variable named name. You can have several
pb_set_tpl_var executions to assign as much variables as you need.

You cannot use these reserved template variable names in pb_set_tpl_var:

action
mode
panel

Template/Views file

File: themes/default/polls.tpl

Explanation:

The template will receive all assigned data as the values of a $m array. The current action is accessible via $m.action
variable.

{if $m.action eq 'view'}: Checks the action in the URL.
{include file="block_begin.tpl"}: Includes the beginning block template.
Hello {$m.name}! This is the polls index!: Displays a greeting with a name passed from the
controller.
{include file="block_end.tpl"}: Includes the ending block template.

URL Structure:

To access the module, use the URL: index.php?m=polls&d=view

<?php

pb_on_action('sample', function () {
 pb_title('Polls title');
 pb_template('polls');
 pb_set_tpl_var('name', 'world');
});

{if $m.action eq 'view'}
 {include file="block_begin.tpl"}

 Hello {$m.name}! This is the polls index!

 {include file="block_end.tpl"}
{/if}

index.php: Application entry point.
m=polls: Indicates the 'polls' module.
d=view: Specifies the 'view' action within the 'polls' module.

Testing:

Visit index.php?m=polls&d=view to trigger the 'view' action, rendering the 'polls.tpl' template and displaying the
greeting message.

Chapter 3. Creating the Base Admin Module for Polls

The following file serves as a framework for an admin-facing module. We'll build upon this framework in upcoming
chapters to add the actual code.

File: modules/polls-admin.php

<?php

/*
 * Module Name: Polls Management
 */

use PB\Access\PBAccess;
use PB\Common\Redirect;
use PB\Core\PBURL;
use PB\UI\UI;

pb_on_action('admin', function ()
 {
 pb_title('Polls Management');
 $ui=new UI();
 $ui->NotificationInfo('Polls Management administration');
 $ui->Output(true);
 });

pb_on_action('install', function ()
 {
 PBAccess::AdminRequired();
 pb_register_module(pb_current_module(), 'Polls Management');
 pb_register_autoload('poll-models');
 execsql("CREATE TABLE `polls` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `title` varchar(255) NOT NULL,
 `user_id` int(11) unsigned NOT NULL DEFAULT '0',
 PRIMARY KEY (`id`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8;");
 execsql("CREATE TABLE `poll_answers` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `poll_id` int(11) unsigned NOT NULL DEFAULT '0',
 `title` varchar(255) NOT NULL,
 `votes` int(11) unsigned NOT NULL DEFAULT '0',
 PRIMARY KEY (`id`), KEY `poll_id` (`poll_id`,`title`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8;");
 Redirect::Now(PBURL::CurrentModule('admin'));
 });

pb_on_action('uninstall', function ()
 {
 PBAccess::AdminRequired();
 pb_unregister_module(pb_current_module());
 pb_unregister_autoload('poll-models');
 execsql("DROP TABLE `poll_answers`;");
 execsql("DROP TABLE `polls`;");
 Redirect::Now(PBURL::AdminModulesManagement());
 });

Explanation:

This file defines three mandatory controllers, namely 'admin,' 'install,' and 'uninstall,' which form the core components of any
administrative module.

admin: This action serves as the module's dashboard, providing an interface for administrative tasks.
install: Handles the installation process by creating necessary tables and registering the module within the CMS.
uninstall: Handles the cleanup process when the module is uninstalled, ensuring the proper removal of the
module and associated tables when uninstalling.

The top comment is mandatory for CMS detection and displaying the module in the Modules Management section for later
installation.

Instructions for Installation:

1. Log in with administrator credentials.
2. Navigate to the Modules Management section.
3. Click on the Add Module button.
4. Find 'Polls Management' iwithin the available modules and click Install.
5. The module should now be installed, redirecting the user to the admin dashboard of the Polls module.

What next?

This framework establishes the groundwork for an administrative module for polls, containing essential controllers required
for administrative functionalities.

In the upcoming chapter, we will explore the functionalities and code within this file in greater detail. This deeper
examination will provide a more thorough understanding of its operations and inner workings.

Chapter 4. Base Admin Module for Polls Explained

Let's explore the functionalities embedded within each section of the code snippet. This detailed examination unveils the
purpose and significance of individual lines, unraveling the essential actions responsible for configuring, installing, and
uninstalling the 'Polls Management' module within PushButtonCMS. Each section plays a crucial role in defining the
administrative interface, managing database tasks, and ensuring a seamless integration of the module, shedding light on its
inner workings.

Use Statements

Imports necessary classes for accessing PushButtonCMS functionalities.

/*
 * Module Name: Polls Management
 */

use PB\Access\PBAccess;
use PB\Common\Redirect;
use PB\Core\PBURL;
use PB\UI\UI;

Controller for 'admin' action

This action serves as the module's dashboard, providing an interface for administrative tasks. Let's display a sample message
for now. We will add more code here later.

Define the title of the page as 'Polls Management'.

Notification Display & UI Output:

Here, we will utilize the basic UI component to simplify view creation. The UI() class helps create a user interface without
building a template file. You just need to use the standard components from \PB\UI library.

Initializing the UI component:

Displaying a simple information notification:

To complete the interface initialization, execute Output() with true. This invokes a default UI template and tells the CMS to
display it.

Controller for 'install' action

This controller manages installation tasks for the module.

Here we will register the module so CMS will know that it exists. Also, we will create needed tables for later usage.

Ensure only administrators can launch the installation process. If the user is not an administrator, a default access denied
page will be displayed, and the controller code following this line will not be executed.

pb_on_action('admin', function () { ... });

pb_title('Polls Management');

$ui = new UI();

$ui->NotificationInfo('Polls Management administration');

$ui->Output(true);

pb_on_action('install', function () { ... });

Register the module in the CMS installed modules:

Inform the CMS about an additional autoloading file for additional functions (in our case for declaring the models). We will
create the file later.

Create the 'polls' and 'poll_answers' tables in the database:

Be cautious when using the execsql(...) function as it enables the execution of virtually any SQL statement, which
could pose security risks.

And the Redirect::Now(<url>) statement will immediately redirect the visitor to the <url>. No code after this
statement will be executed. PBURL::CurrentModule(<action>) generates a URL for launching a specified action
within the current module. Therefore, the next block will redirect the user to the admin controller described above.

Controller for 'uninstall' action

Handles cleanup when the module is uninstalled.

Restrict anyone from uninstalling the module via the browser, for example, by opening index.php?m=polls-
admin&d=uninstall in browser.

PBAccess::AdminRequired();

pb_register_module(pb_current_module(), 'Polls Management');

pb_register_autoload('poll-models');

execsql("CREATE TABLE `polls`...");
execsql("CREATE TABLE ...");

Redirect::Now(PBURL::CurrentModule('admin'));

pb_on_action('uninstall', function () { ... });

PBAccess::AdminRequired();

Unregister 'Polls Management' from the CMS and remove the autoloading file.

Delete the 'poll_answers' and 'polls' tables from the database as they are no longer needed.

Redirect the user to the modules administration page using PBURL::AdminModulesManagement().

What's Next

In the next chapters, we will build a simple poll management tool with basic UI components.

Chapter 5. Adding a Simple Form for Poll Creation

This section introduces a basic form setup for creating polls within the PushButtonCMS environment. The form enables
users to input poll questions and answers. The data handling functionality will be integrated in subsequent chapters.

Use Statements

These 'use' statements are essential for accessing and utilizing various functionalities within PushButtonCMS.

Controller for 'admin' Action

We modify the admin dashboard by adding a button to create a new poll. The \PB\UI\Buttons component allows
displaying one or more buttons. Thus, we remove the sample notification and add a button instead.

pb_unregister_module(pb_current_module());
pb_unregister_autoload('poll-models');

execsql("DROP TABLE `poll_answers`;");
execsql("DROP TABLE `polls`;");

Redirect::Now(PBURL::AdminModulesManagement());

use PB\Access\PBAccess;
use PB\Common\Redirect;
use PB\Core\PBURL;
use PB\PB;
use PB\UI\Buttons;
use PB\UI\Form;
use PB\UI\UI;

Controller for 'create-poll' Action

The 'create-poll' action will handle the actual saving of poll data, to be implemented in subsequent updates.

It's important to have a 'create-poll' controller before the 'add-poll' controller in the code. This organization will aid in error
handling later.

Controller for 'add-poll' Action

This controller manages the addition of a new poll by presenting a form for users to input poll details. We'll use a Form
component. Usage for a POST request is simple: new Form(<url to handle form>).

We will add four text fields using AddText(<variable name>, <field title>, <true if this field
is required>). The first one will have the cursor in it (that's why we use SetFocus()) to enhance user input
convenience. Question and two answers are mandatory, while the third answer is optional.

By default, the Form element represents an HTML-form with a POST method.

pb_on_action('admin', function ()
 {
 pb_title('Polls Management');
 $ui = new UI();

 // Initialize a component for buttons
 $b = new Buttons();
 // Adding a button to redirect to the 'add-poll' action for creating a new poll
 $b->Button('Add Poll', PBURL::CurrentModule('add-poll'));
 // Adding the button to the UI
 $ui->Add($b);

 $ui->Output(true);
 });

pb_on_action('create-poll', function ()
 {
 // We will add actual saving here later
 Redirect::Now(PBURL::CurrentModule('admin'));
 });

pb_on_action('add-poll', function () {
 pb_title('Add Poll');
 $ui = new UI();

 // Create a new form
 $f = new Form(PBURL::CurrentModule('create-poll'));
 // Adding form elements for poll creation
 $f->AddText('question', 'Poll Question', true)->SetFocus();
 $f->AddText('answer1', 'Answer 1', true);
 $f->AddText('answer2', 'Answer 2', true);
 $f->AddText('answer3', 'Answer 3');
 // Load values submitted via POST request into the form - for error handling later
 $f->LoadValuesArray(PB::Requests()->POSTAsArray());
 // Add the form to the UI
 $ui->Add($f);

 $ui->Output(true);
});

What's Next

Subsequent chapters will focus on implementing functionality to handle the submitted poll data.

Chapter 6. Form Error Handling

In this section, we'll delve into error handling mechanisms integrated into the 'add-poll' and 'create-poll' actions. These
enhancements enable effective validation and display of error messages when creating polls.

Controller for 'create-poll' Action

The 'create-poll' action is responsible for validating the submitted data before proceeding with poll creation. It checks if
essential fields such as question and answers are provided. If any field is empty, it adds an error message using
PB::Errors()->AddError(). If no errors are found, the poll is considered created, a success popup notification is
displayed using pb_notify('Poll created!'), and the user is redirected to the admin dashboard.

To access POST data, PB::POST(<name>) could be used. To access GET data, we can use PB::GET(<name>). Both
of them will return a RequestParam object for the respective <name> variable within GET or POST. You can use the
following methods to work with the values:

Exists() will detect an absent value (for example if there was no <name> key in the POST request).
isEmpty() will detect absent or empty values.
AsString(), AsFloat(), AsInt(), AsBool(), AsArray() will return the value converted to the described
type.
AsAbsInt() will also make negative values positive.
AsStringOrDefault(<default-value>) will return <default-value> if the value is empty or absent.
isStringEqual(<string-to-compare>) helps in quick comparisons.

Please mention pb_set_action('add-poll'); at the end of the controller function. It changes the active action to
add-poll, but it will not immediately trigger the controller for the add-poll action. The controller for the add-poll
action will actually be executed after the completion of the create-poll controller if the add-poll controller is present
in the code below. If the code for the add-poll controller is above the create-poll or it is not in this file, the add-
poll controller will not be executed.

Controller for 'add-poll' Action

The 'add-poll' action handles the presentation of the form for adding a new poll. It incorporates error handling by displaying
UI errors using PB::Errors()->DisplayUIErrors($ui). PB::Errors() can be filled in create-poll

pb_on_action('create-poll', function ()
 {
 if (PB::POST('question')->isEmpty())
 PB::Errors()->AddError('Question required');
 if (PB::POST('answer1')->isEmpty())
 PB::Errors()->AddError('First answer required');
 if (PB::POST('answer2')->isEmpty())
 PB::Errors()->AddError('Second answer required');

 if (!PB::Errors()->HasErrors())
 {
 // We will add actual saving here later
 pb_notify('Poll created!');
 Redirect::Now(PBURL::CurrentModule('admin'));
 }
 else
 {
 pb_set_action('add-poll');
 }
 });

controller. If errors are present, the form displays the error messages.

Let's take a closer look at the following code line:

You can try omitting this block and opening the Add Poll page. You won't see any difference because there's actually
nothing to do in this situation. However, if you attempt to submit a form with invalid data, you will encounter an empty form
after the error. The code $f->LoadValuesArray(...) is intended to preload provided data into the form inputs. It
retrieves the values from an array if there are keys with the names of the input elements. The PB::Requests() helper can
provide you with GET and POST data as an array using POSTAsArray() or GETAsArray().

What's Next

These implementations ensure proper validation and error handling during the poll creation process, offering users clear
guidance and notifications when essential information is missing or incorrectly entered.

In next chapters we will create models to be able to save the data.

Chapter 7. Creating Basic Models for Polls and Poll Answers

To interact with the database, we need models for polls and poll answers. Let's create a file named
modules/preload/poll-models.php (remember our autoload registration - this file will be included before any
controller, making the models available to all controllers).

Poll model

In this file, we'll start by declaring a class that extends the base PBDBObject class, representing an active record with a rich
model pattern.

pb_on_action('add-poll', function ()
 {
 pb_title('Add Poll');
 $ui = new UI();

 // Display UI errors, if any
 PB::Errors()->DisplayUIErrors($ui);

 // Create a new form
 $f = new Form(PBURL::CurrentModule('create-poll'));

 // Adding form elements for poll creation
 $f->AddText('question', 'Poll Question', true)->SetFocus();
 $f->AddText('answer1', 'Answer 1', true);
 $f->AddText('answer2', 'Answer 2', true);
 $f->AddText('answer3', 'Answer 3');

 // Load values submitted via POST request into the form for error handling
 $f->LoadValuesArray(PB::Requests()->POSTAsArray());

 // Add the form to the UI
 $ui->Add($f);
 $ui->Output(true);
 });

$f->LoadValuesArray(PB::Requests()->POSTAsArray());

This class requires the declaration of three methods:

TableName(): Should return the database table name for this object.
FieldNameForID(): Represents the field name for the primary key. The primary key is accessible via the ID()
method and is treated as an integer.
FieldNameForTitle(): Represents the field name for the title. The title will be accessible using the Title()
method and will be treated as a string. If there is no title field, you should return an empty string.

For example:

Additionally, declare a function to access the user_id field:

This uses the FieldIntValue(<field-name>) method, providing various helpers for accessing fields as different
types. The convention suggests using specific methods to access specific field types, such as FieldFloatValue(),
FieldStringValue(), etc.

Field Value Helper Methods Explained

Within PushButtonCMS models, various Field...Value() methods exist to facilitate the retrieval and interpretation of
data from database fields. These methods are tailored to handle different data types effectively:

FieldFloatValue() - Retrieves the value from a field and converts it to a floating-point number.
FieldMoneyValue() - Similar to FieldFloatValue(), this method specifically caters to monetary values by
rounding the float to two decimal places, commonly used for financial data.
FieldIntValue() - Fetches the value from a field and interprets it as an integer.
FieldBoolValue() - Used to interpret integer fields as boolean values. It returns true if the field's value is
greater than zero, otherwise false.
FieldStringValue() - Retrieves the value from a field and treats it as a string.

class Poll extends \PB\DB\ORM\PBDBObject
 {
 // Methods to be defined...
 }

public static function TableName(): string
 {
 return 'polls';
 }

public static function FieldNameForID(): string
 {
 return 'id';
 }

public static function FieldNameForTitle(): string
 {
 return 'title';
 }

public function UserID(): int
 {
 return $this->FieldIntValue('user_id');
 }

These helper methods are designed to streamline data retrieval from database fields while ensuring appropriate interpretation
according to specific data types within PushButtonCMS models.

How to Create a Record

We're only setting up reading methods for now, with no write methods declared. However, we need to create the poll
somehow. Let's add a static method for this:

This Create method will generate a row in the database table and return an object representing the created row. The
convention suggests using a Create method for object creation, allowing usage with Poll::Create(...).

Poll Answer Model

Let's also create a similar class for poll answers, keeping the structure similar. The combined file will look like this:

public static function Create(string $poll_question, int $created_by_user_id): self
{
 return self::CreateWithParams([
 'title' => $poll_question,
 'user_id' => $created_by_user_id,
]);
}

<?php

/**
 * @method static self initSingleton($id)
 * @method static self UsingCache($id)
 * @method static self initNotExistent()
 */
class Poll extends \PB\DB\ORM\PBDBObject
 {

 public static function TableName(): string
 {
 return 'polls';
 }

 public static function FieldNameForID(): string
 {
 return 'id';
 }

 public static function FieldNameForTitle(): string
 {
 return 'title';
 }

 public function UserID(): int
 {
 return $this->FieldIntValue('user_id');
 }

 public static function Create(string $poll_question, int $created_by_user_id): self
 {
 return self::CreateWithParams([
 'title'=>$poll_question,
 'user_id'=>$created_by_user_id,
]);
 }

 }

/**
 * @method static self initSingleton($id)

This file contains a DocBlock before every class, aiding development with widely-used IDEs. It introduces useful helper
functions for handling object initialization and cache usage, making object manipulation more efficient and consistent.

DocBlock Functions Explained

initSingleton(<primary-key-value>) - Creates a singleton object associated with the provided primary
key value. Any subsequent objects with the same primary key initialized with initSingleton will reference the
same object instance, enhancing memory efficiency.
UsingCache(<primary-key-value>) - Optimizes performance by caching object data. Newly created
objects with the specified primary key will be initialized using cached data. Be cautious: modifications to objects
won't update the cache, potentially leading to outdated data if not managed carefully.
initNotExistent() - Facilitates the creation of an object instance pointing to a non-existent (not found) row in
the database table. This instance cannot be updated but is helpful for initializing objects when actual data isn't present.

What's next

In the next chapter, we'll utilize these models to create polls.

Chapter 8. Writing Poll Data to the Database

Let's Update the Controller

The 'create-poll' controller within 'modules/poll-admin.php' has undergone significant updates to handle the storage of poll-
related data into the database.

 * @method static self UsingCache($id)
 * @method static self initNotExistent()
 */
class PollAnswer extends \PB\DB\ORM\PBDBObject
 {

 public static function TableName(): string
 {
 return 'poll_answers';
 }

 public static function FieldNameForID(): string
 {
 return 'id';
 }

 public static function FieldNameForTitle(): string
 {
 return 'title';
 }

 public function PollID(): int
 {
 return $this->FieldIntValue('poll_id');
 }

 public function VotesCount(): int
 {
 return $this->FieldIntValue('votes');
 }

 public static function Create(Poll $poll, string $answer_title): self
 {
 return self::CreateWithParams([
 'title'=>$answer_title,
 'poll_id'=>$poll->ID(),
 'votes'=>0,
]);
 }

 }

This revised controller has been designed to handle the input of poll questions and up to three answers, ensuring a robust
storage mechanism in the database using the Poll and PollAnswer models.

Let's delve into the specifics of these modifications and why they were structured as such:

Changes Explained

Handling Question and Answers

$poll = Poll::Create(...): This line initializes a new 'Poll' object, capturing the submitted question and
associating it with the currently logged-in user.

PollAnswer::Create(...): For each answer (answer 1 and answer 2), a corresponding 'PollAnswer' entry is
created, linked to the newly formed poll. If a third answer is provided in the form, another 'PollAnswer' entry is
generated, continuing the association with the same poll.

The decision to create entries separately for each answer within the 'PollAnswer' table allows for scalability and ease of
retrieval when handling multiple answers associated with a single poll. By structuring the code this way, the system
accommodates flexibility in the number of potential answers while maintaining a clear linkage to the corresponding poll.

Safeguarding Against HTML/JS Injection

When handling form inputs submitted by users, especially those destined for display on web pages, sanitizing the input data
is crucial

The usage of PB::POST(<var-name>)->EscapedString() primarily serves as a safety measure against HTML and
JavaScript injections. It escapes characters in the string, ensuring that special characters (like angle brackets, quotes, etc.) are
properly handled.

In the context of form submissions for poll creation (Poll and PollAnswer models), using EscapedString() on the
POST data ensures that user-supplied values for the poll question and answers are sanitized against HTML/JS injections.
This practice helps to maintain the integrity and security of the application by neutralizing characters that could potentially
be exploited to inject harmful scripts or content into the webpage.

pb_on_action('create-poll', function ()
 {
 if (PB::POST('question')->isEmpty())
 PB::Errors()->AddError('Question required');
 if (PB::POST('answer1')->isEmpty())
 PB::Errors()->AddError('First answer required');
 if (PB::POST('answer2')->isEmpty())
 PB::Errors()->AddError('Second answer required');
 if (!PB::Errors()->HasErrors())
 {
 // Creating a new poll entry
 $poll = Poll::Create(PB::POST('question')->EscapedString(), PB::User()->ID());

 // Creating entries for answers 1 and 2
 PollAnswer::Create($poll, PB::POST('answer1')->EscapedString());
 PollAnswer::Create($poll, PB::POST('answer2')->EscapedString());

 // Creating an entry for answer 3 if provided
 if (!PB::POST('answer3')->isEmpty())
 PollAnswer::Create($poll, PB::POST('answer3')->EscapedString());

 pb_notify('Poll created!');
 Redirect::Now(PBURL::CurrentModule('admin'));
 }
 else
 pb_set_action('add-poll');
 });

Future Expansion

It's essential to note that in upcoming developments, we'll enhance the functionality to handle an arbitrary number of answers
more conveniently. This will streamline the process of managing polls with numerous answers, offering a more adaptable
solution for varied polling scenarios.

Chapter 9. Declaring Lists for Data Retrieval

Leveraging PBDBList for Data Retrieval

To efficiently manage and retrieve data from the database, the PBDBList class provides a flexible and robust solution. It
offers methods for setting filters, specifying limits and offsets, and fetching data from the database.

In the context of our polls application, we have created two lists: PollList and PollAnswersList. These lists extend
the PBDBList class and declare the specific object class they handle using the ObjectClassName method.

Here is an overview of the methods provided by PBDBList.

Methods for Data Retrieval

Working with Preloaded Data

When working with preloaded data, set filters, limits, offsets, and use the Load() method to preload the filtered dataset.
Then, employ the following methods:

Item($index): Retrieves a specific item at the given index.
EachItem(): Iterates over each item in the list.
FirstItem(): Retrieves the first item in the list.
LastItem(): Retrieves the last item in the list.
GetItemWithID($id): Retrieves an item based on its ID.

Working with Large Datasets without Preloading

When dealing with large datasets without preloading, set filters, limits, offsets, and use the Open() method to access the
dataset. Utilize:

Fetch(): Retrieves the next item in the filtered dataset.

Additional Methods for List Management

SetFilterField...: These methods set filters based on various field types, such as
SetFilterFieldIntValue.
OrderByField($field, $asc): This method orders the list based on a specified field and in either ascending
or descending order.

These methods offer a powerful means of customizing and optimizing data retrieval. They are exclusively available for use
within PBDBList descendant classes, ensuring that data logic remains encapsulated within the list classes.

Example Implementation

Below are examples of two lists, PollList and PollAnswersList, each inheriting from PBDBList. These classes are
used to manage datasets for polls and their associated answers.

Let's add two lists to modules/preload/poll-models.php.

These lists allow for setting filters, sorting, and efficient data retrieval, enhancing the management of dataset interactions
within the PushButtonCMS environment.

PollList

PollList extends PBDBList, a class that facilitates managing and retrieving data from a database. This particular list
deals specifically with polls. Let's explore its components:

The mandatory ObjectClassName() method defines the class name of the objects this list holds, which is Poll in this
case. It ensures that the list manages and contains instances of the specified class.

use PB\DB\ORM\PBDBList;

//Previous code...

/**
 * @method Poll Item($index)
 * @method Poll[] EachItem()
 * @method Poll|NULL Fetch()
 * @method Poll|NULL FirstItem()
 * @method Poll|NULL LastItem()
 * @method Poll|NULL GetItemWithID($id)
 */
class PollList extends PBDBList
 {

 protected function ObjectClassName(): string
 {
 return Poll::class;
 }

 public function FilterUser(int $user_id): void
 {
 $this->SetFilterFieldIntValue('user_id', $user_id);
 }

 }

/**
 * @method PollAnswer Item($index)
 * @method PollAnswer[] EachItem()
 * @method PollAnswer|NULL Fetch()
 * @method PollAnswer|NULL FirstItem()
 * @method PollAnswer|NULL LastItem()
 * @method PollAnswer|NULL GetItemWithID($id)
 */
class PollAnswersList extends PBDBList
 {

 protected function ObjectClassName(): string
 {
 return PollAnswer::class;
 }

 public function FilterPoll(int $poll_id): void
 {
 $this->SetFilterFieldIntValue('poll_id', $poll_id);
 }

 public function OrderByVotes(bool $asc=true): void
 {
 $this->OrderByField('votes', $asc);
 }

 }

The next method filters the list based on the user_id field. This function helps retrieve a subset of polls based on the user
context. It sets the filter to restrict data retrieval to only those polls associated with the provided user ID.

PollAnswersList

Similarly, PollAnswersList extends PBDBList and manages a list of PollAnswer objects.

Like in PollList, the ObjectClassName() method specifies the class name of the objects this list holds, which is
PollAnswer. It ensures that the list contains instances of the specified class.

This method filters the list based on the poll ID. It restricts data retrieval to poll answers associated with the provided poll
ID. It helps to fetch answers specific to a particular poll.

Let's add a method to order the list based on the number of votes. It arranges the poll answers in either ascending or
descending order based on the number of votes each answer has received. This function assists in presenting poll answers
based on their popularity or other voting criteria.

OrderByID(bool $asc=true): Orders the list based on the object IDs. It arranges the objects in either
ascending ($asc=true) or descending ($asc=false) order of their IDs.
OrderByTitle(bool $asc=true): Orders the list based on the titles of the objects. It arranges the objects in
either ascending or descending order of their titles.

What's Next

In the next chapters we'll use declared lists to dislpay admin interface and a voting page.

 protected function ObjectClassName(): string
 {
 return PollAnswer::class;
 }

public function FilterUser(int $user_id): void
 {
 $this->SetFilterFieldIntValue('user_id', $user_id);
 }

public function FilterPoll(int $poll_id): void
 {
 $this->SetFilterFieldIntValue('poll_id', $poll_id);
 }

public function OrderByVotes(bool $asc=true): void
 {
 $this->OrderByField('votes', $asc);
 }

Chapter 10. Displaying a Poll List in Admin Interface

To visualize the poll list in the administrative section, let's integrate the Grid UI component. Begin by including the Grid
class in the 'use' section of your code in modules/polls-admin.php.

In the 'admin' controller, enhance the interface by adding a button to view the polls:

Now, implement the 'view-polls' controller to render the list of polls. This controller manages the display of the polls within
a grid layout.

Retrieving Polls with PollList

use PB\UI\Grid;

pb_on_action('admin', function () {
 // ...
 $b->Button('View Polls', PBURL::CurrentModule('view-polls'));
 // ...
});

pb_on_action('view-polls', function ()
 {
 pb_title('Polls');
 $ui = new UI();
 $grid = new Grid();

 // Column Additions and Setup
 $grid->AddCol('title', 'Title');
 $grid->AddCol('view', 'View on website');
 $grid->AddEdit();
 $grid->AddDelete();

 $polls = new PollList();
 $polls->FilterUser(PB::User()->ID());
 $polls->Limit(10);
 $polls->Offset(PB::GET('from')->AsInt());
 $polls->OrderByID(false);
 $polls->Load();

 foreach ($polls->EachItem() as $poll)
 {
 // Populate Grid with Poll Data
 $grid->Label('title', $poll->Title());
 $grid->URL('title', PBURL::CurrentModule('answers', ['id'=>$poll->ID()]));
 $grid->Label('view', 'View on website');
 $grid->URL('view', PBURL::Module('polls', 'details', ['id'=>$poll->ID()]), true);
 $grid->NewRow();
 }

 if ($grid->RowCount() === 0)
 $grid->SingleLineLabel('Nothing found');

 $ui->Add($grid);
 $ui->AddPaginatorForList($polls);
 $ui->Output(true);
 });

Let's configure the PollList to display a limited set of polls, organized with the help of the paginator.

Let's break down the code:

Instantiating PollList

Here, a new instance of the PollList class is created, indicating that we are dealing with a list of polls previously declared
in modules/preload/poll-models.php.

Applying User Filter

The FilterUser method is used to filter the polls based on the current user's ID. This ensures that only polls associated
with the logged-in user are fetched.

Setting Data for Pagination

The Limit method restricts the number of polls to be retrieved to some reasonable value. In this case, it limits the result to
10 polls.

The Offset method determines the starting point of the polls to be displayed. It uses the 'from' GET parameter, which is
automatically created by the paginator. The AsAbsInt method ensures that the offset is a positive integer.

Ordering by ID

The OrderByID method specifies the sorting order for the polls. In this case, it sorts them by ID in descending order (
false indicates descending order).

$polls = new PollList();
$polls->FilterUser(PB::User()->ID());
$polls->Limit(10);
$polls->Offset(PB::GET('from')->AsAbsInt());
$polls->OrderByID(false);
$polls->Load();

$polls = new PollList();

$polls->FilterUser(PB::User()->ID());

$polls->Limit(10);

$polls->Offset(PB::GET('from')->AsAbsInt());

Loading Polls

Finally, the Load method executes the query and loads the polls based on the specified configuration.

This configuration prepares the PollList to fetch a limited set of polls according to the specified criteria, facilitating an
organized and user-friendly display in the code below.

Iterating Through Polls for Display

To iterate through the list of polls fetched using the PollList instance, the code utilizes a foreach loop with the
EachItem()

The EachItem() method is used within a foreach loop to iterate through each poll fetched by the PollList instance,
assigning each poll object to the variable $poll. Inside this loop, you can access individual poll objects and perform
operations or display information related to each poll. For instance, you can access specific attributes of the poll, such as its
title, ID, or any other relevant data, to populate a user interface or perform specific actions for each poll in the list.

Grid Component

The Grid component in PushButtonCMS is a versatile tool used to construct and display tabular data in a structured layout. It
allows for the creation of tables with columns, each designed to showcase specific information. This component facilitates
various functionalities within the grid, such as adding columns, including edit and delete actions, and displaying data rows
efficiently. With features like pagination and customizable column settings, the Grid component provides a user-friendly
interface for managing and presenting data in a systematic manner.

Grid::AddCol

The Grid::AddCol() method is used to define and add columns to the grid layout. It specifies the columns to be
displayed in the grid, assigning each column a label and an identifier. In the provided code, AddCol('title',
'Title') creates a column labeled 'Title' that displays the titles of the polls.

Grid::AddEdit

The Grid::AddEdit() method is employed to include an 'Edit' action within the grid, typically as a column and a
specific icon for each row. It sets up an editing feature that allows users to modify or update the content displayed in a row,
providing a link to trigger the editing functionality.

Grid::AddDelete

The Grid::AddDelete() method is used to incorporate a 'Delete' action within the grid, often as a separate column. It
establishes a mechanism to remove or delete specific rows of data from the grid or the associated dataset. Typically, this

$polls->OrderByID(false);

$polls->Load();

foreach ($polls->EachItem() as $poll)
 {
 // Code block to handle each poll
 }

functionality would be activated through a button or link provided in the grid.

In the provided code:

AddCol('title', 'Title') creates a column labeled 'Title' to display the titles of the polls.
AddCol('view', 'View on website') creates a column labeled to allow to open a poll page for regular
visitors.
AddEdit() configures an 'Edit' action within the grid, presumably allowing users to modify the poll details.
AddDelete() sets up a 'Delete' action, likely enabling the admin to remove selected polls from the list.

Grid::Label

The Grid::Label() method facilitates the insertion of text-based content into specific grid cells. It populates the
designated cell with the provided text, in this case, the title of the polls.

Grid::URL

The Grid::URL() method is used to generate clickable links within the grid layout. It adds a hyperlink to a particular cell,
enabling users to navigate to other pages or access further details associated with the polls.

In the context of this code:

Grid::URL('title', PBURL::CurrentModule('answers', ['id'=>$poll->ID()])); sets up
a link that directs to the voting page for a specific poll within the administrative section.
Grid::URL('view', PBURL::Module('polls', 'details', ['id'=>$poll->ID()]),
true); configures a link that leads to a standard view page on the website for a given poll. The last parameter true
means that the link should be open in a new tab or window of the browser.

Keep in mind that these pages haven't been created yet; we'll implement them in forthcoming chapters.

Finalizing Grid Row

Once all essential columns and data for a specific row in the grid have been added, the NewRow() method is employed to
denote the completion of the current row.

This method serves as a delimiter, signaling the conclusion of data insertion for the current row in the grid layout, and
subsequently readies the grid to progress to the next row.

Paginator

The paginator feature plays a crucial role in managing and navigating through the poll list efficiently. It's conveniently added
using the following code:

This paginator operates by creating a 'from' GET parameter, which serves as an offset within the list. It's seamlessly
integrated and initialized directly from the current PBDBList, streamlining the process of navigating through multiple polls
without overwhelming the interface.

Chapter 11. Displaying Poll Details for Visitors

To showcase the details of a poll without the voting functionality at this stage, we'll create a view that presents the poll
question and its associated answers.

$ui->AddPaginatorForList($polls);

Preparing Poll Answers List

To retrieve the list of answers for a poll in a convenient way, a method named Answers() has been added to the Poll
model. This method fetches the associated answers using PollAnswersList and arranges them by ID.

Styling the Poll Display

A CSS file, themes/default/css/polls.css, has been created to stylize the poll elements.

Details Controller

A new controller for the 'details' action in modules/polls.php has been set up to handle the display of poll details. It
fetches the poll and its associated answers, sets the title, and includes the CSS file.

class Poll extends PBDBObject
 {
 // ... existing code ...

 public function Answers(): PollAnswersList
 {
 $poll_answers = new PollAnswersList();
 $poll_answers->FilterPoll($this->ID());
 $poll_answers->OrderByID();
 $poll_answers->Load();
 return $poll_answers;
 }
 }

.poll-question {
 font-size: 2em;
 padding: 0.2em;
}

.poll-answer {
 font-size: 1.5em;
 padding: 0.1em 1em;
}

use PB\PB;

pb_on_action('details', function ()
 {
 $poll=new Poll(PB::GET('id')->AsInt());
 if (!$poll->Exists())
 return;

 pb_title('Vote!');
 pb_add_cssfile('css/polls.css');

 pb_template('polls');

 pb_set_tpl_var('question', $poll->Title());

 $answers=[];
 foreach ($poll->Answers()->EachItem() as $poll_answer)
 {
 $answers[]=[
 'id'=>$poll_answer->ID(),

The controller begins by retrieving the poll based on the provided ID using the Poll model. If the requested poll does not
exist, the controller returns a 404 error result.

Adding CSS File

The pb_add_cssfile(<path-within-theme>) function is used to include a CSS file for styling the poll display.
This function looks for the specified CSS file in the current theme's directory. If the file is not found in the current theme, it
defaults to using the same file located in the 'themes/default/' directory.

In our case themes/default/css/polls.css will be included.

Providing Data For the Template

This line specifies the template file named 'polls.tpl' that will be used for rendering the content. It sets up the rendering
environment for the subsequent data.

Here, the title of the poll fetched from the database is assigned to the template variable 'question'. This will enable the
'question' variable to be accessed and used within the 'polls.tpl' template.

This part initializes an empty array named 'answers' and populates it with details of each answer associated with the poll. It
iterates through the list of answers using the EachItem() method provided by the PollAnswersList and constructs an
array containing each answer's ID and title.

Finally, this line assigns the array of answers to the template variable answers. It allows the answers variable to be
accessed and utilized within the polls.tpl template for displaying the list of answers associated with the poll.

 'title'=>$poll_answer->Title(),
];
 }
 pb_set_tpl_var('answers', $answers);

 });

$poll=new Poll(PB::GET('id')->AsInt());
if (!$poll->Exists())
 return;

pb_template('polls');

pb_set_tpl_var('question', $poll->Title());

$answers=[];
foreach ($poll->Answers()->EachItem() as $poll_answer)
 {
 $answers[]=[
 'id'=>$poll_answer->ID(),
 'title'=>$poll_answer->Title(),
];
 }

This code prepares the necessary data to be displayed within the polls.tpl template, ensuring the availability of the poll's
title and associated answers for rendering in the front-end.

View Template

The view template in themes/default/polls.tpl renders the poll question and its associated answers.

Here's a breakdown of the elements within this template:

{if $m.action eq 'details'}: This conditional check verifies whether the current action is 'details' to
ensure that the subsequent content is displayed only when the action matches 'details'.
{include file="block_begin.tpl"} and {include file="block_end.tpl"}: These lines are
responsible for including the 'block_begin.tpl' and 'block_end.tpl' files of block enclosing templates.
<div class="poll-question">{$m.question}</div>: This snippet renders the poll question. The
question's content is fetched from the template variable question, which was set in the controller logic (
pb_set_tpl_var('question', $poll->Title());).
{foreach from=$m.answers item=answer}: This 'foreach' loop iterates through the answers array,
assigned in the controller logic (pb_set_tpl_var('answers', $answers);). For each answer in the
$m.answers array, it assigns the current answer to the variable answer.
<div class="poll-answer">{$answer.title}</div>: Inside the loop, this line displays the title of
each answer in a separate 'poll-answer' styled division. It fetches the title of each answer from the answer variable
within the loop.

Checking Created Code via Interface Navigation

Open the Modules Management interface within your application.
From the Modules Management interface, locate and access the 'Polls Management' section.
Within the 'Polls Management' section, there should be an option or button labeled 'View Polls'. Click on it.
Click on View on website next to the specific poll title. This link should direct you to the details page for that
particular poll.

What's Next

This chapter sets up the groundwork for displaying poll details, showcasing the question and associated answers in a stylized
format. The subsequent chapter will introduce the voting functionality.

Chapter 12. Implementing Voting System

pb_set_tpl_var('answers', $answers);

{if $m.action eq 'details'}
 {include file="block_begin.tpl"}

 <div class="poll-question">{$m.question}</div>

 {foreach from=$m.answers item=answer}
 <div class="poll-answer">{$answer.title}</div>
 {/foreach}

 {include file="block_end.tpl"}
{/if}

To enable the voting mechanism, modifications are made to the PollAnswer model, the addition of new controllers, and
enhancements to the existing controllers and views.

Details Controller Modification

The controller modification in the 'details' action of modules/preload/poll-models.php has been enhanced to
provide necessary variables for the template:

PB::Errors()->GetErrorsAsString() retrieves and concatenates any set errors as a string, or returns an empty
string if no errors have been set. This ensures that if any errors occur, they will be accessible in the template for display.

View Adjustment

The 'details' view is enhanced to handle errors and display the voting form:

This template displays the poll question and answer options in a form allowing users to vote. If any error occurs during
voting, it will be displayed above the form.

PollAnswer Model Update

The Vote() method is added to the PollAnswer model in the modules/preload/poll-models.php file:

pb_on_action('details', function ()
 {
 // Existing code...
 pb_set_tpl_var('vote_url', PBURL::CurrentModule('vote', ['id' => $poll->ID()]));
 pb_set_tpl_var('error_message', PB::Errors()->GetErrorsAsString());
 });

{if $m.action eq "details"}
 {include file="block_begin.tpl"}

 {if $m.error_message neq ""}
 <div class="alert alert-danger">{$m.error_message}</div>
 {/if}

 <form method="post" action="{$m.vote_url}">
 <div class="poll-question">{$m.question}</div>

 {foreach from=$m.answers item=answer}
 <div class="poll-answer">
 <label>
 <input type="radio" name="answer_id" value="{$answer.id}" />
 {$answer.title}
 </label>
 </div>
 {/foreach}

 <input type="submit" value="Vote" />
 </form>

 {include file="block_end.tpl"}
{/if}

class PollAnswer extends PBDBObject
 {

This method increments the 'votes' field for the selected answer.

An alternative approach for achieving this could be through the UpdateValues() method, explicitly setting the 'votes'
field:

However, using Increment() is a more efficient and direct way to handle this particular task. It specifically handles
incrementing a numerical field, in this case, the 'votes' count, without the need for explicitly retrieving and setting the
updated value.

New Controllers

Two new controllers are created in modules/polls.php to manage the voting process and display a 'Thank You'
message upon successful voting.

The use block will look like this:

vote

The 'vote' controller manages the voting process:

 // Existing code...

 public function Vote(): void
 {
 $this->Increment('votes');
 }
 }

public function Vote(): void
 {
 $this->UpdateValues([
 'votes'=>$this->VotesCount()+1,
]);
 }

use PB\Common\Redirect;
use PB\Core\PBURL;
use PB\PB;
use PB\UI\Buttons;
use PB\UI\UI;

pb_on_action('vote', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 if (!$poll->Exists())
 return;

 $selected_answer_id = PB::POST('answer_id')->AsInt();
 $answer = $poll->Answers()->GetItemWithID($selected_answer_id);
 // If the selected answer exists, increment its vote count and redirect to 'thank-you' controller
 if ($answer !== NULL)
 {
 $answer->Vote(); // Increment the vote count for the selected answer
 Redirect::Now(PBURL::CurrentModule('thank-you')); // Redirect to the 'thank-you' controller
 }
 else

In the absence of a selected answer, this controller will set an error message and switch the active action to 'details' to
execute that controller after the current one finishes.

The order of declaring controllers is important. Ensure that 'vote' is declared before 'details' to guarantee proper execution of
the 'details' controller in case of an error.

If no errors occur, the selected answer's vote count will increment, and the user will be redirected to the 'thank-you' controller
within the current module.

We attempted to retrieve the selected answer ID using PB::POST('answer_id')->AsInt(). The method
PBDBList::GetItemWithID(<object-id>) will return the object with the provided ID from preloaded items or
NULL if not found.

Remember, the template file contains a radio item:

This radio input allows users to select an answer by its ID for voting purposes.

thank-you

This controller is responsible for displaying a 'Thank You' message after a successful vote. To streamline and expedite the
development process, a UI component is utilized without the need for a specific template.

Additional information about UI::Notification components:

1. UI::NotificationSuccess(<message>): This method is used to display a success message or notification
to the user.

2. UI::NotificationError(<message>) is used to display error messages or notifications to users.
3. UI::NotificationWarning(<message>) indicates situations where there might not be an error but warns

users about potential issues or important information.
4. UI::NotificationInfo(<message>) doesn't signify an error or warning but offers additional information or

guidance.

These notification methods can be used to convey different types of messages to users, allowing for clear and concise
communication based on the nature of the information being presented.

Your instructions are clear and concise. However, I've made a few minor adjustments for clarity and completeness:

 {
 // If no answer is selected, set an error message and switch to the 'details' controller
 PB::Errors()->AddError('Please select an answer');
 pb_set_action('details');
 }
 });

<input type="radio" name="answer_id" value="{$answer.id}" />

pb_on_action('thank-you', function ()
 {
 pb_title('Thank You');
 $ui = new UI();
 $ui->NotificationSuccess('You voted successfully!');
 $b = new Buttons();
 $b->Button('View polls', PBURL::CurrentModule('view'));
 $ui->Add($b);
 $ui->Output(true);
 });

Test it Out

Now, you can test the functionality. Navigate to the poll, select an answer, and click the 'Vote' button.

If everything is successful, you should be automatically redirected to the 'Thank You' page.

To confirm that the voting process has worked, check the database to ensure that the votes field has been updated.

It's important to note that in this example, you can vote as many times as you want. While this is suitable for testing
purposes, a real-world voting application should implement proper counting mechanisms. However, for the sake of
simplicity, we won't cover this aspect in our example.

Chapter 13. Managing Answers in Admin Interface

Managing answers associated with polls is crucial for maintaining accurate data within the administrative section. Let's
implement functionalities to add, edit, and delete answers for polls.

Extending the PollAnswer Model

We expand the PollAnswer model by introducing a method named SetAnswerWithVotes. This method allows the
setting of a new answer title along with the votes count for a specific answer within the system.

This method facilitates the modification of an answer's title and votes count simultaneously, ensuring accurate updates within
the database.

Controllers for Managing Answers

These controllers streamline the management of answers associated with polls in the administrative section, ensuring smooth
CRUD operations for answers within the system.

answers

Displays a structured list of answers for a specific poll in an admin-friendly grid format. The structure is generally similar to
the view-polls controller described earlier, but with the incorporation of new functionalities.

PB::Show404IfEmpty(<object>) is utilized to display a 404 error page if the provided object is empty or not
found. This ensures a smoother user experience when handling missing or erroneous data. It's crucial to note that if
the 404 error page is executed due to the absence of the poll or answer, the subsequent code following
PB::Show404IfEmpty() won't be executed.

PB::BreadCrumbs() generates breadcrumbs to aid in navigation. In this context, it is used to create a trail
allowing easy return to the main polls section.

class PollAnswer extends PBDBObject {
 // Existing code...
 public function SetAnswerWithVotes(string $new_answer_title, int $new_votes_count): void
 {
 $this->UpdateValues([
 'title' => $new_answer_title,
 'votes' => $new_votes_count,
]);
 }
}

PBURL::Current() returns the current URL. It is used in PBURL::CurrentModule() for the edit and
delete columns to provide a URL to return to after these actions.

This controller provides administrators with an organized view of answers associated with a specific poll, offering seamless
navigation and functionality for effective management.

delete-answer

This controller handles the deletion of a specific answer associated with a poll.

The Remove() method effectively removes the associated row for the object within the database. However, it's essential to
note that even after calling Remove(), the object in memory persists but cannot execute any database-related operations.

pb_on_action('answers', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);

 PB::BreadCrumbs()
 ->Add('Polls', PBURL::CurrentModule('view-polls'))
 ->AddCurrent();

 pb_title('Answers - '.$poll->Title());
 $ui=new UI();

 $grid=new Grid();
 $grid->AddCol('index', '#');
 $grid->AddCol('answer', 'Answer');
 $grid->AddCol('votes', 'Votes');
 $grid->AddEdit();
 $grid->AddDelete();
 foreach ($poll->Answers()->EachItem() as $index=>$answer)
 {
 $grid->Label('index', $index+1);
 $grid->Label('answer', $answer->Title());
 $grid->Label('votes', $answer->VotesCount());
 $grid->URL('edit', PBURL::CurrentModule('edit-answer',
 ['id'=>$poll->ID(), 'answer'=>$answer->ID()], PBURL::Current()));
 $grid->URL('delete', PBURL::CurrentModule('delete-answer',
 ['id'=>$poll->ID(), 'answer'=>$answer->ID()], PBURL::Current()));
 $grid->NewRow();
 }
 if ($grid->RowCount()===0)
 $grid->SingleLineLabel('Nothing found');
 $ui->Add($grid);

 $b=new Buttons();
 $b->Button('Add Answer', PBURL::CurrentModule('add-answer',
 ['id'=>$poll->ID()], PBURL::Current()));
 $ui->Add($b);

 $ui->Output(true);
 });

pb_on_action('delete-answer', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 $answer=$poll->Answers()->GetItemWithID(PB::GET('answer')->AsInt());
 PB::Show404IfEmpty($answer);
 $answer->Remove();
 Redirect::ReturnToNow();
 });

Redirect::ReturnToNow() triggers an immediate redirection using the returnto parameter present in the current
GET request. If the returnto parameter is set to a specific URL, the user will be redirected there instantly.

You can set up the returnto parameter in the URL manually or utilize helper functions. Both PBURL::Module() and
PBURL::CurrentModule() have a last parameter to set up the return URL, offering flexibility in managing redirection
after actions.

The content looks mostly accurate. Just a couple of adjustments for clarity:

Create Answer Controllers

In this section, two controllers handle the addition of new answers to a poll. I't important to declare create-answer
before add-answer to maintain a proper error handling.

create-answer

Responsible for creating a new answer for a specific poll.

In this controller, PB::Errors()->SwitchActionOnError(<action>) sets an alternative action in case an error
occurs during the execution of a specific action. If PB::Errors()->AddError() is called or has already been called, it
triggers a switch to the specified action (it will be executed upon the finishing of currrent controller).

add-answer

Displays a form to add a new answer to a poll.

In this code, PBURL::CurrentWithAction() generates a URL with an updated action parameter based on the current
URL query. It's a convenient method to pass parameters between multiple controllers when they share the same parameters
except for the action.

pb_on_action('create-answer', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 PB::Errors()->SwitchActionOnError('add-answer');
 if (PB::POST('answer')->isEmpty())
 PB::Errors()->AddError('Answer required');
 else
 {
 PollAnswer::Create($poll, PB::POST('answer')->EscapedString());
 Redirect::ReturnToNow();
 }
 });

pb_on_action('add-answer', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 pb_title('Add Answer to Poll - '.$poll->Title());
 $ui=new UI();
 PB::Errors()->DisplayUIErrors($ui);
 $f=new Form(PBURL::CurrentWithAction('create-answer'));
 $f->AddText('answer', 'Answer', true)
 ->SetFocus();
 $f->LoadValuesArray(PB::Requests()->POSTAsArray());
 $ui->Add($f);
 $ui->Output(true);
 });

Update Answer Controllers

These controllers efficiently handle the editing and updating of existing answers associated with polls, providing a
straightforward user interface for such modifications.

update-answer

Manages the update process for an existing answer, similar to the approach taken in create-answer and create-poll
.

Two fields, namely answer and votes, are used for validation and to update the respective properties simultaneously.
While this approach might differ in a real-life application where more intricate data handling could be implemented, this
demonstration illustrates how to update a rich model.

edit-answer

Renders a form for editing an existing answer.

In the code, Form::WithValue() is used to pre-fill the form fields with the existing data when editing an answer.
Additionally, the LoadValuesArray() method is used to potentially overwrite pre-filled values if an error occurred and
the POST data contains information sent with the form. Ensure that the LoadValuesArray() method is called after all

pb_on_action('update-answer', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 $answer=$poll->Answers()->GetItemWithID(PB::GET('answer')->AsInt());
 PB::Show404IfEmpty($answer);
 PB::Errors()->SwitchActionOnError('edit-answer');
 if (PB::POST('answer')->isEmpty())
 PB::Errors()->AddError('Answer required');
 elseif (PB::POST('votes')->AsInt()<0)
 PB::Errors()->AddError('Wrong votes count');
 else
 {
 $answer->SetAnswerWithVotes(
 PB::POST('answer')->EscapedString(),
 PB::POST('votes')->AsInt()
);
 Redirect::ReturnToNow();
 }
 });

pb_on_action('edit-answer', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 $answer=$poll->Answers()->GetItemWithID(PB::GET('answer')->AsInt());
 PB::Show404IfEmpty($answer);
 pb_title('Edit Answer');
 $ui=new UI();
 PB::Errors()->DisplayUIErrors($ui);
 $f=new Form(PBURL::CurrentWithAction('update-answer'));
 $f->AddText('answer', 'Answer', true)
 ->WithValue($answer->Title())
 ->SetFocus();
 $f->AddText('votes', 'Votes Count', true)
 ->WithValue($answer->VotesCount());
 $f->LoadValuesArray(PB::Requests()->POSTAsArray());
 $ui->Add($f);
 $ui->Output(true);
 });

WithValue() methods to avoid overwriting pre-filled values incorrectly.

What's Next

We are almost done with polls management. Let's make final adjustments and review.

Chapter 14. Final Steps in Polls Management Module

For now, we have almost completed everything. There's a small adjustment needed - the ability to update the poll question
and delete the poll. So, we should add some new controllers to the modules/polls-admin.php file and make slight
modifications to the poll list controller.

Update Poll Controllers

Modify Poll List

Let's update the poll list by incorporating URLs for the edit and delete columns. Also, here's an example demonstrating
how to configure a custom deletion confirmation for individual rows using CustomMessageBox(<prompt>).
Additionally, we'll place a block for adding a new poll below the table and a paginator for user convenience.

edit-poll controller

The edit-poll controller utilizes a POSTForm, which functions similarly to a regular Form component but is
specifically designed for POST requests. Notably, it automatically loads current POST values into the form before invoking
the UI, similar to the earlier manual loading with $f->LoadValuesArray(PB::Requests()-
>POSTAsArray());.

pb_on_action('view-polls', function ()
 {
 // Existing code...
 foreach ($polls->EachItem() as $poll)
 {
 // Existing code...
 $grid->URL('edit', PBURL::CurrentModule('edit-poll',
 ['id'=>$poll->ID()], PBURL::Current()));
 $grid->URL('delete', PBURL::CurrentModule('delete-poll',
 ['id'=>$poll->ID()], PBURL::Current()));
 $grid->CustomMessageBox('delete', 'Are you sure to delete this poll?');
 $grid->NewRow();
 }
 // Existing code...
 $b=new Buttons();
 $b->Button('Add Poll', PBURL::CurrentModule('add-poll', [], PBURL::Current()));
 $ui->Add($b);

 $ui->Output(true);
 });

pb_on_action('edit-poll', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 pb_title('Edit Poll');
 $ui=new UI();
 PB::Errors()->DisplayUIErrors($ui);
 $f=new POSTForm(PBURL::CurrentWithAction('update-poll'));
 $f->AddText('question', 'Question', true)

update-poll controller

The update-poll controller operates similarly to previous examples. However, as the 'question' field is designated as a
Title for the Poll model, we utilize the default SetTitle(<new-value>) method to update it.

Delete the Poll

At this point, we need to delete the poll, and the controller for it is quite similar to what we've done before.

What we need to do is modify the Poll model to handle the proper deletion process. The records in the poll_answers
table are linked to this poll, so we need to delete them before removing the record from the polls table.

There are two ways to achieve this. One approach is to configure the database tables for cascade deletion, allowing the
RDBMS to manage deletion automatically.

However, this may not always be the best solution, especially when additional actions are necessary, such as removing
associated files or making external API calls.

Therefore, we'll handle it programmatically within our Poll model by declaring the OnRemoveBeforeStart()
method. This method is automatically invoked before the actual deletion of a record for a Poll model.

 ->WithValue($poll->Title())
 ->SetFocus();
 $ui->Add($f);
 $ui->Output(true);
 });

pb_on_action('update-poll', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 PB::Errors()->SwitchActionOnError('edit-poll');
 if (PB::POST('question')->isEmpty())
 PB::Errors()->AddError('Question required');
 else
 {
 $poll->SetTitle(PB::POST('question')->EscapedString());
 Redirect::ReturnToNow();
 }
 });

pb_on_action('delete-poll', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 $poll->Remove();
 Redirect::ReturnToNow();
 });

class Poll extends PBDBObject
 {
 // Existing code...
 protected function OnRemoveBeforeStart(): void
 {
 foreach ($this->Answers()->EachItem() as $answer)
 $answer->Remove();

This code ensures that all associated answers are deleted before removing the poll record.

Final Adjustments to the Code

To enhance the future edit flexibility, we'll replace all Form elements in our example with POSTForm.

Also, let's add some more breadcrumbs for better user experience.

Additionally, we'll update the redirection in the create-poll controller using
Redirect::NowReturnToOr(<default-url>). This method redirects to the provided returnto URL or the
default URL if no redirection URL is provided.

We also want to restrict unauthorized users from managing polls. To accomplish this, we'll add the following block right
after the use section in the modules/polls-admin.php file:

This function redirects visitors to the sign-in form if they are not logged in.

What Could Be Done?

We could further enhance security by verifying the user associated with the poll using PBAccess::UserRequired. This
function redirects anyone other than the specified user (and admin) to the 'Access Denied' page.

However, for the sake of simplicity, we won't implement this here.

What Should Be Done?

If you wish for regular users to create and manage their polls, consider placing a link index.php?m=polls-
admin&d=view-polls in the navigation menu for logged-in users.

What's Next

Please review the finalized version of modules/polls-admin.php.

 }
 }

Redirect::NowReturnToOr(PBURL::CurrentModule('admin'));

PBAccess::EnforceLogin();

pb_on_action('edit-poll', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 PBAccess::UserRequired($poll->UserID());
 //...
 });

Chapter 15. Finalized Polls Administration Module

<?php

/*
 * Module Name: Polls Management
 */

use PB\Access\PBAccess;
use PB\Common\Redirect;
use PB\Core\PBURL;
use PB\PB;
use PB\UI\Buttons;
use PB\UI\Grid;
use PB\UI\POSTForm;
use PB\UI\UI;

PBAccess::EnforceLogin();

pb_on_action('delete-answer', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 $answer=$poll->Answers()->GetItemWithID(PB::GET('answer')->AsInt());
 PB::Show404IfEmpty($answer);
 $answer->Remove();
 Redirect::ReturnToNow();
 });

pb_on_action('create-answer', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 PB::Errors()->SwitchActionOnError('add-answer');
 if (PB::POST('answer')->isEmpty())
 PB::Errors()->AddError('Answer required');
 else
 {
 PollAnswer::Create($poll, PB::POST('answer')->EscapedString());
 Redirect::ReturnToNow();
 }
 });

pb_on_action('add-answer', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 PB::BreadCrumbs()
 ->Add('Polls', PBURL::CurrentModule('view-polls'))
 ->Add($poll->Title(), PBURL::CurrentModule('answers', ['id'=>$poll->ID()]))
 ->AddCurrent();
 pb_title('Add Answer to Poll - '.$poll->Title());
 $ui=new UI();
 PB::Errors()->DisplayUIErrors($ui);
 $f=new POSTForm(PBURL::CurrentWithAction('create-answer'));
 $f->AddText('answer', 'Answer', true)
 ->SetFocus();
 $ui->Add($f);
 $ui->Output(true);
 });

pb_on_action('update-answer', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 $answer=$poll->Answers()->GetItemWithID(PB::GET('answer')->AsInt());
 PB::Show404IfEmpty($answer);
 PB::Errors()->SwitchActionOnError('edit-answer');
 if (PB::POST('answer')->isEmpty())
 PB::Errors()->AddError('Answer required');
 elseif (PB::POST('votes')->AsInt()<0)
 PB::Errors()->AddError('Wrong votes count');

 else
 {
 $answer->SetAnswerWithVotes(
 PB::POST('answer')->EscapedString(),
 PB::POST('votes')->AsInt()
);
 Redirect::ReturnToNow();
 }
 });

pb_on_action('edit-answer', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 $answer=$poll->Answers()->GetItemWithID(PB::GET('answer')->AsInt());
 PB::Show404IfEmpty($answer);
 PB::BreadCrumbs()
 ->Add('Polls', PBURL::CurrentModule('view-polls'))
 ->Add($poll->Title(), PBURL::CurrentModule('answers', ['id'=>$poll->ID()]))
 ->AddCurrent();
 pb_title('Edit Answer');
 $ui=new UI();
 PB::Errors()->DisplayUIErrors($ui);
 $f=new POSTForm(PBURL::CurrentWithAction('update-answer'));
 $f->AddText('answer', 'Answer', true)
 ->WithValue($answer->Title())
 ->SetFocus();
 $f->AddText('votes', 'Votes Count', true)
 ->WithValue($answer->VotesCount());
 $f->LoadValuesArray(PB::Requests()->POSTAsArray());
 $ui->Add($f);
 $ui->Output(true);
 });

pb_on_action('answers', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);

 PB::BreadCrumbs()
 ->Add('Polls', PBURL::CurrentModule('view-polls'))
 ->AddCurrent();

 pb_title('Answers - '.$poll->Title());
 $ui=new UI();

 $grid=new Grid();
 $grid->AddCol('index', '#');
 $grid->AddCol('answer', 'Answer');
 $grid->AddCol('votes', 'Votes');
 $grid->AddEdit();
 $grid->AddDelete();
 foreach ($poll->Answers()->EachItem() as $index=>$answer)
 {
 $grid->Label('index', $index+1);
 $grid->Label('answer', $answer->Title());
 $grid->Label('votes', $answer->VotesCount());
 $grid->URL('edit', PBURL::CurrentModule('edit-answer',
 ['id'=>$poll->ID(), 'answer'=>$answer->ID()], PBURL::Current()));
 $grid->URL('delete', PBURL::CurrentModule('delete-answer',
 ['id'=>$poll->ID(), 'answer'=>$answer->ID()], PBURL::Current()));
 $grid->NewRow();
 }
 if ($grid->RowCount()===0)
 $grid->SingleLineLabel('Nothing found');
 $ui->Add($grid);

 $b=new Buttons();
 $b->Button('Add Answer', PBURL::CurrentModule('add-answer',
 ['id'=>$poll->ID()], PBURL::Current()));
 $ui->Add($b);

 $ui->Output(true);
 });

pb_on_action('delete-poll', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);

 $poll->Remove();
 Redirect::ReturnToNow();
 });

pb_on_action('update-poll', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 PB::Errors()->SwitchActionOnError('edit-poll');
 if (PB::POST('question')->isEmpty())
 PB::Errors()->AddError('Question required');
 else
 {
 $poll->SetTitle(PB::POST('question')->EscapedString());
 Redirect::ReturnToNow();
 }
 });

pb_on_action('edit-poll', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);
 pb_title('Edit Poll');
 $ui=new UI();
 PB::Errors()->DisplayUIErrors($ui);
 $f=new POSTForm(PBURL::CurrentWithAction('update-poll'));
 $f->AddText('question', 'Question', true)
 ->WithValue($poll->Title())
 ->SetFocus();
 $ui->Add($f);
 $ui->Output(true);
 });

pb_on_action('create-poll', function ()
 {
 if (PB::POST('question')->isEmpty())
 PB::Errors()->AddError('Question required');
 if (PB::POST('answer1')->isEmpty())
 PB::Errors()->AddError('First answer required');
 if (PB::POST('answer2')->isEmpty())
 PB::Errors()->AddError('Second answer required');
 if (!PB::Errors()->HasErrors())
 {
 $poll=Poll::Create(PB::POST('question')->EscapedString(), PB::User()->ID());
 PollAnswer::Create($poll, PB::POST('answer1')->EscapedString());
 PollAnswer::Create($poll, PB::POST('answer2')->EscapedString());
 if (!PB::POST('answer3')->isEmpty())
 PollAnswer::Create($poll, PB::POST('answer3')->EscapedString());
 pb_notify('Poll created!');
 Redirect::NowReturnToOr(PBURL::CurrentModule('admin'));
 }
 else
 pb_set_action('add-poll');
 });

pb_on_action('add-poll', function ()
 {
 pb_title('Add Poll');
 $ui=new UI();
 PB::Errors()->DisplayUIErrors($ui);
 $f=new POSTForm(PBURL::CurrentModule('create-poll'));
 $f->AddText('question', 'Poll Question', true)
 ->SetFocus();
 $f->AddText('answer1', 'Answer 1', true);
 $f->AddText('answer2', 'Answer 2', true);
 $f->AddText('answer3', 'Answer 3');
 $ui->Add($f);
 $ui->Output(true);
 });

pb_on_action('view-polls', function ()
 {
 pb_title('Polls');
 $ui=new UI();
 $grid=new Grid();

 // Column Additions and Setup
 $grid->AddCol('title', 'Title');
 $grid->AddCol('view', 'View on website');

 $grid->AddEdit();
 $grid->AddDelete();

 $polls=new PollList();
 $polls->FilterUser(PB::User()->ID());
 $polls->Limit(10);
 $polls->Offset(PB::GET('from')->AsAbsInt());
 $polls->OrderByID(false);
 $polls->Load();

 foreach ($polls->EachItem() as $poll)
 {
 // Populate Grid with Poll Data
 $grid->Label('title', $poll->Title());
 $grid->URL('title', PBURL::CurrentModule('answers', ['id'=>$poll->ID()]));
 $grid->Label('view', 'View on website');
 $grid->URL('view', PBURL::Module('polls', 'details',
 ['id'=>$poll->ID()]), true);
 $grid->URL('edit', PBURL::CurrentModule('edit-poll',
 ['id'=>$poll->ID()], PBURL::Current()));
 $grid->URL('delete', PBURL::CurrentModule('delete-poll',
 ['id'=>$poll->ID()], PBURL::Current()));
 $grid->CustomMessageBox('delete', 'Are you sure to delete this poll?');
 $grid->NewRow();
 }

 if ($grid->RowCount()===0)
 $grid->SingleLineLabel('Nothing found');

 $ui->Add($grid);
 $ui->AddPaginatorForList($polls);

 $b=new Buttons();
 $b->Button('Add Poll', PBURL::CurrentModule('add-poll', [], PBURL::Current()));
 $ui->Add($b);

 $ui->Output(true);
 });

pb_on_action('admin', function ()
 {
 pb_title('Polls Management');
 $ui=new UI();
 $b=new Buttons();
 $b->Button('Add Poll', PBURL::CurrentModule('add-poll'));
 $b->Button('View Polls', PBURL::CurrentModule('view-polls'));
 $ui->Add($b);
 $ui->Output(true);
 });

pb_on_action('install', function ()
 {
 PBAccess::AdminRequired();
 pb_register_module(pb_current_module(), 'Polls Management');
 pb_register_autoload('poll-models');
 execsql("CREATE TABLE `polls` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `title` varchar(255) NOT NULL,
 `user_id` int(11) unsigned NOT NULL DEFAULT '0',
 PRIMARY KEY (`id`)) ENGINE=MyISAM DEFAULT CHARSET=utf8;");
 execsql("CREATE TABLE `poll_answers` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `poll_id` int(11) unsigned NOT NULL DEFAULT '0',
 `title` varchar(255) NOT NULL, `votes` int(11) unsigned NOT NULL DEFAULT '0',
 PRIMARY KEY (`id`), KEY `poll_id` (`poll_id`,`title`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8;");
 Redirect::Now(PBURL::CurrentModule('admin'));
 });

pb_on_action('uninstall', function ()
 {
 PBAccess::AdminRequired();
 pb_unregister_module(pb_current_module());
 pb_unregister_autoload('poll-models');
 execsql("DROP TABLE `poll_answers`;");
 execsql("DROP TABLE `polls`;");
 Redirect::Now(PBURL::AdminModulesManagement());
 });

Chapter 16. Polls Index for Visitors

Presently, we've established the functions for managing polls. It's time to create an index of polls for visitors, granting them
access to the latest polls available for voting. Additionally, let's incorporate poll results on the 'thank you' page.

Polls Index

Controller Update

To enhance the visitor-facing controller for the 'view' action in the modules/polls.php file, we'll transition from a basic
'Hello World' example to real functionality.

Loading the list data is the initial step.

This process resembles what was done in the admin section. However, since there are no filters required here, we used the
DisableNoFiltersBlocker() method. The PBDBList includes a built-in blocker to prevent overloading the
database with queries lacking filters.

Then, we assign the poll data for the view and initialize the pagination with the pb_pagination_init_for_list
helper.

pb_on_action('view', function ()
 {
 pb_title('Polls');
 pb_template('polls');

 $polls = new PollList();
 $polls->DisableNoFiltersBlocker();
 $polls->Limit(10);
 $polls->Offset(PB::GET('from')->AsAbsInt());
 $polls->OrderByID(false);
 $polls->Load();

 $polls_data = [];

 foreach ($polls->EachItem() as $poll)
 {
 $polls_data[] = [
 'title' => $poll->Title(),
 'vote_url' => PBURL::CurrentModule('details', ['id' => $poll->ID()]),
];
 }

 pb_set_tpl_var('polls', $polls_data);

 pb_pagination_init_for_list($polls);
 });

$polls = new PollList();
$polls->DisableNoFiltersBlocker();
$polls->Limit(10);
$polls->Offset(PB::GET('from')->AsAbsInt());
$polls->OrderByID(false);
$polls->Load();

To initialize pagination manually, we could use pb_pagination_init(<total-count>, <current-limit>,
<current-offset>, <custom-url>).

View Update

The view in themes/default/polls.tpl also requires an update.

This code shares similarities with what we've previously built. However, we need to integrate a paginator here. We'll include
a pagination block using the following code.

Thank You with Vote Results

We're bypassing the use of $poll->Answers() to load the answers because we require a custom order. Loading answers
mirrors what we did with polls, but we won't be implementing pagination here since there won't be a large volume of
answers.

pb_pagination_init_for_list($polls);

{if $m.action eq "view"}
 {include file="block_begin.tpl"}

 <ul class="polls-list-container">
 {foreach from=$m.polls item=poll}
 {$poll.title}
 {/foreach}

 {include file="paginator.tpl"}

 {include file="block_end.tpl"}
{/if}

{include file="paginator.tpl"}

pb_on_action('thank-you', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);

 pb_title('Thank You');
 pb_template('polls');

 $poll_answers = new PollAnswersList();
 $poll_answers->FilterPoll($poll->ID());
 $poll_answers->OrderByVotes(false);
 $poll_answers->Load();

 $answers_data=[];
 foreach ($poll_answers->EachItem() as $answer)
 {
 $answers_data[]=[
 'title'=>$answer->Title(),
 'votes'=>$answer->VotesCount(),

Let's incorporate a 'thank-you' view in the template to exhibit an ordered list of answers along with their respective vote
counts:

What's Next

Please review the finalized version of visitor facing section.

Chapter 17. Finalizing Visitor-Facing Functionality

Now, we'll culminate the visitor-oriented functionalities by refining the controller and views for the polls section.

modules/polls.php

];
 }
 pb_set_tpl_var('answers', $answers_data);

 pb_set_tpl_var('polls_url', PBURL::CurrentModule('view'));
 });

{if $m.action eq "thank-you"}
 {include file="block_begin.tpl"}

 <div class="alert alert-success">
 You voted successfully!
 </div>

 <ul class="polls-list-container">
 {foreach from=$m.answers item=answer}
 {$answer.title} - {$answer.votes} votes
 {/foreach}

 <div class="text-center">
 View Polls
 </div>

 {include file="block_end.tpl"}
{/if}

<?php

use PB\Common\Redirect;
use PB\Core\PBURL;
use PB\PB;

pb_on_action('thank-you', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);

 pb_title('Thank You');
 pb_template('polls');

 $poll_answers = new PollAnswersList();
 $poll_answers->FilterPoll($poll->ID());
 $poll_answers->OrderByVotes(false);
 $poll_answers->Load();

 $answers_data=[];

 foreach ($poll_answers->EachItem() as $answer)
 {
 $answers_data[]=[
 'title'=>$answer->Title(),
 'votes'=>$answer->VotesCount(),
];
 }
 pb_set_tpl_var('answers', $answers_data);

 pb_set_tpl_var('polls_url', PBURL::CurrentModule('view'));
 });

pb_on_action('vote', function ()
 {
 $poll = new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);

 $selected_answer_id = PB::POST('answer_id')->AsInt();
 $answer = $poll->Answers()->GetItemWithID($selected_answer_id);
 if ($answer !== NULL)
 {
 $answer->Vote();
 Redirect::Now(PBURL::CurrentModule('thank-you', ['id'=>$poll->ID()]));
 }
 else
 {
 PB::Errors()->AddError('Please select an answer');
 pb_set_action('details');
 }
 });

pb_on_action('details', function ()
 {
 $poll=new Poll(PB::GET('id')->AsInt());
 PB::Show404IfEmpty($poll);

 pb_title('Vote!');
 pb_add_cssfile('css/polls.css');

 pb_template('polls');

 pb_set_tpl_var('question', $poll->Title());

 $answers=[];
 foreach ($poll->Answers()->EachItem() as $poll_answer)
 {
 $answers[]=[
 'id'=>$poll_answer->ID(),
 'title'=>$poll_answer->Title(),
];
 }
 pb_set_tpl_var('answers', $answers);

 pb_set_tpl_var('vote_url', PBURL::CurrentModule('vote', ['id'=>$poll->ID()]));
 pb_set_tpl_var('error_message', PB::Errors()->GetErrorsAsString());

 });

pb_on_action('view', function ()
 {
 pb_title('Polls');
 pb_template('polls');

 $polls=new PollList();
 $polls->DisableNoFiltersBlocker();
 $polls->Limit(10);
 $polls->Offset(PB::GET('from')->AsAbsInt());
 $polls->OrderByID(false);
 $polls->Load();

 $polls_data=[];

 foreach ($polls->EachItem() as $poll)
 {
 $polls_data[]=[
 'title'=>$poll->Title(),

themes/default/polls.tpl

 'vote_url'=>PBURL::CurrentModule('details', ['id'=>$poll->ID()]),
];
 }

 pb_set_tpl_var('polls', $polls_data);

 pb_pagination_init_for_list($polls);

 });

{if $m.action eq "view"}
 {include file="block_begin.tpl"}

 <ul class="polls-list-container">
 {foreach from=$m.polls item=poll}
 {$poll.title}
 {/foreach}

 {include file="paginator.tpl"}

 {include file="block_end.tpl"}
{/if}

{if $m.action eq "details"}
 {include file="block_begin.tpl"}

 {if $m.error_message neq ""}
 <div class="alert alert-danger">{$m.error_message}</div>
 {/if}

 <form method="post" action="{$m.vote_url}">
 <div class="poll-question">{$m.question}</div>

 {foreach from=$m.answers item=answer}
 <div class="poll-answer">
 <label>
 <input type="radio" name="answer_id" value="{$answer.id}" />
 {$answer.title}
 </label>
 </div>
 {/foreach}

 <input type="submit" value="Vote" />
 </form>

 {include file="block_end.tpl"}
{/if}

{if $m.action eq "thank-you"}
 {include file="block_begin.tpl"}

 <div class="alert alert-success">
 You voted successfully!
 </div>

 <ul class="polls-list-container">
 {foreach from=$m.answers item=answer}
 {$answer.title} - {$answer.votes} votes
 {/foreach}

 <div class="text-center">
 View Polls
 </div>

 {include file="paginator.tpl"}

Chapter 18. Completing Poll Models Implementation

In this chapter, we'll review and integrate the finalized version of the modules/preload/poll-models.php file,
which encapsulates the data models and their functionalities essential for managing polls and associated answers within the
application.

 {include file="block_end.tpl"}
{/if}

<?php

 use PB\DB\ORM\PBDBList;
 use PB\DB\ORM\PBDBObject;

 /**
 * @method static self initSingleton($id)
 * @method static self UsingCache($id)
 * @method static self initNotExistent()
 */
 class Poll extends PBDBObject
 {

 public static function TableName(): string
 {
 return 'polls';
 }

 public static function FieldNameForID(): string
 {
 return 'id';
 }

 public static function FieldNameForTitle(): string
 {
 return 'title';
 }

 public function UserID(): int
 {
 return $this->FieldIntValue('user_id');
 }

 public static function Create(string $poll_question, int $created_by_user_id): self
 {
 return self::CreateWithParams([
 'title'=>$poll_question,
 'user_id'=>$created_by_user_id,
]);
 }

 public function Answers(): PollAnswersList
 {
 $poll_answers = new PollAnswersList();
 $poll_answers->FilterPoll($this->ID());
 $poll_answers->OrderByID();
 $poll_answers->Load();
 return $poll_answers;
 }

 protected function OnRemoveBeforeStart(): void
 {
 foreach ($this->Answers()->EachItem() as $answer)
 $answer->Remove();
 }

 }

 /**
 * @method static self initSingleton($id)

 * @method static self UsingCache($id)
 * @method static self initNotExistent()
 */
 class PollAnswer extends PBDBObject
 {

 public static function TableName(): string
 {
 return 'poll_answers';
 }

 public static function FieldNameForID(): string
 {
 return 'id';
 }

 public static function FieldNameForTitle(): string
 {
 return 'title';
 }

 public function PollID(): int
 {
 return $this->FieldIntValue('poll_id');
 }

 public function VotesCount(): int
 {
 return $this->FieldIntValue('votes');
 }

 public static function Create(Poll $poll, string $answer_title): self
 {
 return self::CreateWithParams([
 'title'=>$answer_title,
 'poll_id'=>$poll->ID(),
 'votes'=>0,
]);
 }

 public function Vote(): void
 {
 $this->Increment('votes');
 }

 public function SetAnswerWithVotes(string $new_answer_title, int $new_votes_count): void
 {
 $this->UpdateValues([
 'title'=>$new_answer_title,
 'votes'=>$new_votes_count,
]);
 }

 }

 /**
 * @method Poll Item($index)
 * @method Poll[] EachItem()
 * @method Poll|NULL Fetch()
 * @method Poll|NULL FirstItem()
 * @method Poll|NULL LastItem()
 * @method Poll|NULL GetItemWithID($id)
 */
 class PollList extends PBDBList
 {

 protected function ObjectClassName(): string
 {
 return Poll::class;
 }

 public function FilterUser(int $user_id): void
 {
 $this->SetFilterFieldIntValue('user_id', $user_id);
 }

 }

 /**

Chapter 19. Embracing Easy Module Building in PushButtonCMS

Creating modules within PushButtonCMS has been showcased through this basic example, highlighting the simplicity and
efficiency of its development framework. This system is specifically crafted for rapid application development, ensuring a
minimal learning curve for project initiation.

PushButtonCMS offers a low entry threshold, allowing developers to swiftly kickstart their projects without diving deep into
complex concepts. The example presented here, though basic, covers a wide array of functionalities crucial to understanding
the system's fundamentals.

The straightforward structure and intuitive design of PushButtonCMS streamline the process of building modules. This
simplicity doesn't compromise the system's capability to handle intricate functionalities. It's a testament to how a simple yet
powerful framework can empower developers to create robust applications with ease.

By providing a clear path for module creation and leveraging its inherent flexibility, PushButtonCMS encourages developers
to focus on crafting efficient solutions rather than grappling with convoluted technicalities. This ease of use fosters a
conducive environment for rapid prototyping and deployment, making it an ideal choice for various projects, whether small-
scale or larger in scope.

PushButtonCMS stands as a testament to the philosophy that simplicity doesn't equate to limitations; instead, it promotes
agility, creativity, and efficient development, empowering developers to bring their ideas to life swiftly and effectively.

 * @method PollAnswer Item($index)
 * @method PollAnswer[] EachItem()
 * @method PollAnswer|NULL Fetch()
 * @method PollAnswer|NULL FirstItem()
 * @method PollAnswer|NULL LastItem()
 * @method PollAnswer|NULL GetItemWithID($id)
 */
 class PollAnswersList extends PBDBList
 {

 protected function ObjectClassName(): string
 {
 return PollAnswer::class;
 }

 public function FilterPoll(int $poll_id): void
 {
 $this->SetFilterFieldIntValue('poll_id', $poll_id);
 }

 public function OrderByVotes(bool $asc=true): void
 {
 $this->OrderByField('votes', $asc);
 }

 }

