Chapter 1. Introduction to PushButtonCM SCM SApplications

Welcome to the exploration of CM S applications using PushButtonCM S!

A CMS application is a platform designed to simplify the creation, management, and delivery of digital content on the web.
Unlike traditional static websites, a CM S application offers a dynamic environment that allows for easy content manipulation
and organization.

In the context of PushButtonCM S, an application usually composed of two distinct modules, each serving a specific purpose:

1. Visitor-Facing M odule: This module forms the public-facing aspect of the application. It caters to the audience
visiting the website, offering a seamless and engaging experience. Content displayed here is accessible to all visitors.

2. Registered/Privileged User Module: The second module operates as the secured section of the application, available
to registered or privileged users. It encompasses functionalities and content reserved for specific user groups,
providing a more tailored and comprehensive experience.

Within these modules, various additional files contribute to the application's functionality and appearance:

e Templates: Structured layouts defining the visual presentation of content.
e CSSand JavaScript Files: Style and interactivity enhancements for aricher user experience.
e Helper Libraries: Additional tools aiding in the development and customization of modules.

Understanding these fundamental components sets the stage for comprehending how PushButtonCM S empowers devel opers
and usersto create versatile, engaging, and secure CM S applications. In the upcoming chapters, we'll delve deeper into the
technical aspects of building and managing these modules within PushButtonCMS.

Sample Poll Application

Throughout this tutorial, we'll create a sample poll application as an illustrative example. This application will showcase the
functionalities of PushButtonCM S in building a user-friendly poll creation and management system. We'll use this example
to explore various aspects of CM S application devel opment.

In the upcoming chapters, we'll delve deeper into the technical aspects of building and managing these modules within
PushButtonCMS.

Chapter 2. CreateYour Fird Module

This setup will create a basic module within PushButtonCMS. It isjust aregular Hello World application - we will add the
magic later. It isavisitor facing module, so we have no any restrictions here.

File Structure:

Create the following filesin your PushButtonCM S project:

e nodul es/ pol | s. php - filefor controllers of the module
e t henes/ def aul t/ pol | s. t pl -filefor views of the module

Controllersfile

File: nodul es/ pol | s. php

<?php

pb_on_action('sanple', function () {
pb_title('Polls title');
pb_tenpl ate(' polls');
pb_set _tpl_var('nane', '"world');

IDF

Explanation:

A controller is created to activate upon triggering an associated action. Controller is typically a calback function, executing
instantly upon the activation of the current action. In our example we created a controller for vi ew action.

e pb_on_action('view, function () { ... });:Associatesthe'view' action with acallback controller
function.

Usually a callback function should set a page title, define which template should be used to display the data and provide a
data to the template.

epb title('Polls title");: Setsthetitle of the page.

e pb_tenmpl ate(' polls');: Specifiesthetemplatefilepol | s. t pl . Don'tuse. t pl extension asit will be
added by defaullt.

e pb_set _tpl_var(' nane', 'world');:Setsavariable named name. You can have severa
pb_set _t pl _var executionsto assign as much variables as you need.

Y ou cannot use these reserved template variable namesin pb_set _t pl _var:

e action
e nNDde
e panel

Template/Viewsfile

File:t henes/ defaul t/ pol I s. t pl

{if $maction eq 'view}
{include file="bl ock_begin.tpl"}

Hello {$m nane}! This is the polls index

{include file="block_end.tpl"}
{1if}

Explanation:

The template will receive all assigned data as the values of a$marray. The current action is accessiblevia$m act i on
variable.

o {if $maction eq 'view }:Checkstheactioninthe URL.

e {include file="Dbl ock_begin.tpl"}:Includesthe beginning block template.

e Hello {$m nane}! This is the polls index!:Displaysagreeting with aname passed from the
controller.

e {include file="block _end.tpl"}: Includesthe ending block template.

URL Structure:

To access the module, usethe URL: i ndex. php?nm=pol | s&d=vi ew

e i ndex. php: Application entry point.
e m=pol | s: Indicates the 'polls module.
e d=vi ew: Specifiesthe 'view' action within the 'polls module.

Testing:

Visiti ndex. php?mepol | s&d=vi ewto trigger the 'view' action, rendering the 'polls.tpl' template and displaying the
greeting message.

Chapter 3. CreatingtheBase Admin Modulefor Palls

The following file serves as aframework for an admin-facing module. We'l build upon this framework in upcoming
chapters to add the actual code.

File: rodul es/ pol | s-adni n. php

<?php

/*
* Modul e Nanme: Pol|ls Managenent
*/

use PB\ Access\ PBAccess;
use PB\ Conmon\ Redi rect;
use PB\ Cor e\ PBURL;

use PB\U\ U ;

pb_on_action('admn', function ()

pb_title(' Polls Managenent');

$ui =new Ul ();

$ui ->Noti ficationlnfo('Polls Minagenent admi nistration');
$ui ->Qut put (true);

1
pb_on_action('install', function ()
PBAccess: : Adni nRequi red() ;
pb_regi ster _nodul e(pb_current _nodul e(), 'Polls Managenent');
pb_regi ster_aut ol oad(' pol | -nodel s');
execsql (" CREATE TABLE "polls®
“id” int(11) unsigned NOT NULL AUTO_| NCREMENT,
“title varchar(255) NOT NULL,
“user _id int(11) unsigned NOT NULL DEFAULT 'O0',
PRI MARY KEY (“id))
ENG NE=My| SAM DEFAULT CHARSET=utf8;");
execsql (" CREATE TABLE "pol | _answers™ (
“id int(11) unsigned NOT NULL AUTO_ | NCREMENT,
“poll _id int(11) unsigned NOT NULL DEFAULT 'O0',
“title varchar(255) NOT NULL,
“votes' int(1l1l) unsigned NOT NULL DEFAULT 'O0',
PRI MARY KEY ("id'), KEY "poll_id (“poll_id,6 “title))
ENG NE=My| SAM DEFAULT CHARSET=ut f8;");
Redi rect: : Now PBURL: : Current Modul e(' admin'));
1
pb_on_action('uninstall', function ()

PBAccess: : Admi nRequi red();

pb_unregi st er _nodul e(pb_current _nodul e());

pb_unregi st er _aut ol oad("' pol | - nodel s');

execsql ("DROP TABLE "pol | _answers™;");

execsql ("DROP TABLE “polls™;");

Redi r ect: : Now(PBURL: : Adm nModul esManagenent ()) ;
1)

Explanation:

This file defines three mandatory controllers, namely ‘admin,’ ‘install,’ and ‘uninstall,’ which form the core components of any
administrative module.

e adm n: Thisaction serves as the module's dashboard, providing an interface for administrative tasks.

e i nst al | : Handles the installation process by creating necessary tables and registering the module within the CMS.

e uni nst al | : Handles the cleanup process when the module is uninstalled, ensuring the proper removal of the
module and associated tables when uninstalling.

The top comment is mandatory for CM S detection and displaying the module in the M odules Management section for later
installation.

/*
* Modul e Name: Pol |l s Managenent
*/

I nstructionsfor I nstallation:

Log inwith administrator credentials.

Navigate to the Modules Management section.

Click onthe Add Module button.

Find 'Polls Management' iwithin the available modules and click I nstall.

The module should now beinstalled, redirecting the user to the admin dashboard of the Polls module.

agrwbdE

What next?

This framework establishes the groundwork for an administrative module for polls, containing essential controllers required
for administrative functionalities.

In the upcoming chapter, we will explore the functionalities and code within thisfile in greater detail. This deeper
examination will provide a more thorough understanding of its operations and inner workings.

Chapter 4. Base Admin Modulefor PallsExplained

Let's explore the functionalities embedded within each section of the code snippet. This detailed examination unveils the
purpose and significance of individua lines, unraveling the essential actions responsible for configuring, installing, and
uninstalling the 'Polls Management' module within PushButtonCM S. Each section plays acrucia role in defining the
administrative interface, managing database tasks, and ensuring a seamless integration of the module, shedding light on its
inner workings.

Use Statements

Imports necessary classes for accessing PushButtonCM S functionalities.

use PB\ Access\ PBAccess;
use PB\ Conmon\ Redi rect;
use PB\ Cor e\ PBURL;

use PB\U\ U ;

Controller for 'admin' action

This action serves as the modul€'s dashboard, providing an interface for administrative tasks. Let's display a sample message
for now. We will add more code here | ater.

pb_on_action('admin', function () { ... });

Define the title of the page as 'Polls Management'.

pb_title(' Polls Managenent');

Notification Display & Ul Output:

Here, we will utilize the basic Ul component to simplify view creation. The Ul() class helps create a user interface without
building atemplate file. Y ou just need to use the standard components from\ PB\ Ul library.

Initializing the Ul component:

$ui = new Ul ();

Displaying a simple information notification:

$ui ->Not i ficationlnfo('Polls Managenment administration');

To complete the interface initialization, execute Output() with true. Thisinvokes adefault Ul template and tells the CMSto
display it.

$ui - >CQut put (true);

Controller for 'install' action

This controller manages install ation tasks for the module.

Here we will register the module so CM S will know that it exists. Also, we will create needed tables for later usage.

pb_on_action('install', function () { ... });

Ensure only administrators can launch the installation process. If the user is not an administrator, a default access denied
page will be displayed, and the controller code following this line will not be executed.

PBAccess: : Adni nRequi red();

Register the module in the CM Sinstalled modules:

pb_regi st er_nodul e(pb_current _nodul e(), 'Polls Managenent');

Inform the CM S about an additional autoloading file for additional functions (in our case for declaring the models). We will
create thefile |ater.

pb_regi ster_aut ol oad(' pol | - nodel s');

Create the 'polls and 'poll_answers' tablesin the database:

execsql (" CREATE TABLE “polls ...");
execsql ("CREATE TABLE ...");

Be cautious when using theexecsql (. . .) function asit enables the execution of virtually any SQL statement, which
could pose security risks.

AndtheRedi rect : : Now(<ur | >) statement will immediately redirect the visitor to the <ur | >. No code after this
statement will be executed. PBURL: : Cur r ent Modul e(<acti on>) generates a URL for launching a specified action
within the current module. Therefore, the next block will redirect the user to the admin controller described above.

Redi rect : : Now(PBURL: : Cur rent Modul e(' adnin'));

Controller for 'uninstall' action

Handles cleanup when the module is uninstalled.

pb_on_action('uninstall', function () { ... });

Restrict anyone from uninstalling the module via the browser, for example, by openingi ndex. php?mepol | s-
adm n&d=uni nst al | in browser.

PBAccess: : Adnmi nRequi red();

Unregister 'Polls Management' from the CM S and remove the autoloading file.

pb_unregi st er _nodul e(pb_current _nodul e());
pb_unregi st er _aut ol oad(' pol | - nodel s');

Delete the 'poll_answers' and 'polls tables from the database as they are no longer needed.

execsql ("DROP TABLE "“pol | _answers™;");
execsql ("DROP TABLE “polls™;");

Redirect the user to the modules administration page using PBURL: : Adimi nMbdul esManagenent () .

Redi r ect: : Now(PBURL: : Adm nModul esManagenent ());

What's Next

In the next chapters, we will build asimple poll management tool with basic Ul components.

Chapter 5. Addinga SmpleForm for Pall Cregtion

This section introduces a basic form setup for creating polls within the PushButtonCM S environment. The form enables
users to input poll questions and answers. The data handling functionality will be integrated in subsequent chapters.

Use Statements

These 'use' statements are essential for accessing and utilizing various functionalities within PushButtonCMS.

use PB\ Access\ PBAccess;
use PB\ Common\ Redi rect ;
use PB\ Cor e\ PBURL;

use PB\ PB;

use PB\ U\ Buttons;

use PB\ U\ Form

use PB\U\ U ;

Controller for '"admin' Action

We modify the admin dashboard by adding a button to create a new poll. The\ PB\ Ul \ But t ons component alows
displaying one or more buttons. Thus, we remove the sample notification and add a button instead.

pb_on_action('admn', function ()

pb_title(' Polls Managenent');
$ui = new Ul ();

Il Initialize a conponent for buttons

$b = new Buttons();

/1 Adding a button to redirect to the 'add-poll' action for creating a new poll
$b->Button(' Add PolI', PBURL:: Current Modul e(' add-poll'));

/1 Adding the button to the Ul

$ui - >Add($b) ;

$ui ->Qut put (true);
s

Controller for 'create-poll* Action

The 'create-poll* action will handle the actual saving of poll data, to be implemented in subsequent updates.

pb_on_action('create-poll', function ()

// W will add actual saving here |ater
Redi rect: : Now(PBURL: : Current Modul e(' adnmin'));

DK

It'simportant to have a'create-poll’ controller before the ‘add-poll* controller in the code. This organization will aid in error
handling later.

Controller for 'add-poll' Action

This controller manages the addition of a new poll by presenting aform for usersto input poll details. We'll useaFor m
component. Usage for a POST request issimple: new Forn{<url to handl e fornp).

Wewill add four text fieldsusing AddText (<vari abl e name>, <field title> <true if this field
i s required>). Thefirst onewill have the cursor init (that's why we use Set Focus()) to enhance user input
convenience. Question and two answers are mandatory, while the third answer is optional.

pb_on_action('add-poll', function () {
pb_title(' Add Poll");
$ui = new Ul ();

/1l Create a new form

$f = new For m(PBURL: : Current Modul e(' create-poll'));

/1 Adding formelenents for poll creation

$f - >AddText (' question', 'Poll Question', true)->SetFocus();
$f - >AddText (' answer1', 'Answer 1', true);

$f - >AddText (' answer2', 'Answer 2', true);

$f - >AddText (' answer3', 'Answer 3');

/'l Load values submitted via POST request into the form- for error handling | ater
$f - >LoadVal uesArray(PB: : Request s() - >POSTAsArray());

/1 Add the formto the U

$ui - >Add($f) ;

$ui - >Qut put (true);
1

By default, the For melement represents an HTML-form with a POST method.

What's Next

Subsequent chapters will focus on implementing functionality to handle the submitted poll data.

Chapter 6. Form Error Handling

In this section, we'll delve into error handling mechanismsintegrated into the 'add-poll' and ‘create-poll’ actions. These
enhancements enable effective validation and display of error messages when creating polls.

Controller for 'create-poll' Action

The ‘create-poll’ action is responsible for validating the submitted data before proceeding with poll creation. It checks if
essential fields such as question and answers are provided. If any field is empty, it adds an error message using

PB: : Errors()->AddError (). If noerorsarefound, the poll is considered created, a success popup notificationis
displayed usingpb_noti fy(' Poll created!'), andthe userisredirected to the admin dashboard.

pb_on_action('create-poll', function ()

1),

if (PB::

if (1PB:
{

el se

POST(' question')->i sEnpty())

::Errors()->AddError (' Question required');

. POST(' answer1')->i sEnpty())
::Errors()->AddError (' First answer required');
. POST("' answer2')->i senpty())
::Errors()->AddError (' Second answer required');

:Errors()->HasErrors())
/1 W will add actual saving here |ater

pb_notify(' Poll created!");
Redi rect: : Now PBURL: : Current Modul e(' admi n'));

pb_set _action('add-poll");

To access POST data, PB: : POST(<name>) could be used. To access GET data, we can use PB: : GET(<nane>) . Both
of them will return aRequest Par amobject for the respective <nane> variable within GET or POST. Y ou can use the
following methods to work with the values:

e Exi st s() will detect an absent value (for example if there was no <name> key in the POST request).
e i SEnpt y() will detect absent or empty values.
e AsString(),AsFloat(),AsInt(),AsBool (),AsArray() will return the value converted to the described

type.

e AsAbsl nt () will also make negative values positive.
e AsStringO Def aul t (<def aul t - val ue>) will return <def aul t - val ue> if the value is empty or absent.
e i sStringEqual (<string-to-conpare>) helpsinquick comparisons.

Please mention pb_set _acti on(' add- pol | ') ; attheend of the controller function. It changes the active action to
add- pol |, but it will not immediately trigger the controller for theadd- pol | action. The controller for the add- pol |

action will actually be executed after the completion of thecr eat e- pol | controller if theadd- pol | controller is present

in the code below. If the code for the add- pol | controller isabovethecr eat e- pol | oritisnotinthisfile theadd-
pol | controller will not be executed.

Controller for ‘add-poll' Action

The 'add-poll' action handles the presentation of the form for adding a new poll. It incorporates error handling by displaying
Ul errorsusing PB: : Errors()->Di spl ayUl Errors($ui).PB:: Errors() canbefilledincreat e- pol |

controller. If errors are present, the form displays the error messages.

pb_on_action('add-poll', function ()

pb_title(' Add Poll");
$ui = new Ul ();

/1 Display U errors, if any
PB: : Errors()->Di splayU Errors($ui);

/!l Create a new form
$f = new For m(PBURL: : Current Modul e(' create-poll'));

/] Adding formelenents for poll creation

$f - >AddText (' question', 'Poll Question', true)->SetFocus();
$f - >AddText (' answer1', 'Answer 1', true);

$f - >AddText (' answer2', 'Answer 2', true);

$f - >AddText (' answer3', 'Answer 3');

/1 Load val ues submitted via POST request into the formfor error handling
$f - >LoadVal uesArray(PB: : Request s()->POSTAsArray());

// Add the formto the U
$ui - >Add($f) ;

$ui - >Qut put (true);
)

Let'stake acloser look at the following code line:

$f - >LoadVal uesArray(PB: : Request s()->POSTAsArray());

Y ou can try omitting this block and opening the Add Poll page. Y ou won't see any difference because there's actually
nothing to do in this situation. However, if you attempt to submit a form with invalid data, you will encounter an empty form
after the error. The code $f - >LoadVal uesArray(. ..) isintended to preload provided datainto the form inputs. It
retrieves the values from an array if there are keys with the names of the input elements. The PB: : Request s() helper can
provide you with GET and POST data as an array using POSTASAr ray() or GETAsArray() .

What's Next

These implementations ensure proper validation and error handling during the poll creation process, offering users clear
guidance and notifications when essential information is missing or incorrectly entered.

In next chapters we will create modelsto be able to save the data.

Chapter 7. Creating Baac Moddsfor Pallsand Poll Answers

To interact with the database, we need models for polls and poll answers. Let's create a file named
nodul es/ pr el oad/ pol | - nodel s. php (remember our autoload registration - this file will be included before any
controller, making the models available to al controllers).

Poll modée

Inthisfile, well start by declaring a class that extends the base PBDBObj ect class, representing an active record with arich
model pattern.

cl ass Pol | extends \PB\ DB\ ORM PBDBObj ect

/1l Methods to be defined...

This class requires the declaration of three methods:

e Tabl eNane() : Should return the database table name for this object.
e Fi el dNaneFor | D() : Represents the field name for the primary key. The primary key is accessible viathe | D()

method and is treated as an integer.

e Fi el dNaneFor Ti t | e() : Represents the field name for the title. The title will be accessible usingthe Ti t | e()

method and will be treated as a string. If thereis no title field, you should return an empty string.

For example:

public static function Tabl eNane(): string

return 'polls';

public static function FieldNameForlD(): string

{
}

return 'id';

public static function FieldNameForTitle(): string

return 'title';

Additionally, declare afunction to accesstheuser _i d field:

public function UserlID(): int

{
}

return $this->FieldlntValue('user_id");

Thisusesthe Fi el dI nt Val ue(<fi el d- nane>) method, providing various helpers for accessing fields as different
types. The convention suggests using specific methods to access specific field types, such asFi el dFl oat Val ue(),
Fi el dStri ngVal ue(), etc.

Field Value Helper Methods Explained

Within PushButtonCM S models, various Fi el d. . . Val ue() methods exist to facilitate the retrieval and interpretation of
data from database fields. These methods are tailored to handle different data types effectively:

Fi el dFl oat Val ue() - Retrievesthe value from afield and convertsit to a floating-point number.

Fi el dMoneyVal ue() - Similar to Fi el dFl oat Val ue() , this method specifically caters to monetary values by
rounding the float to two decimal places, commonly used for financial data.

Fi el dl nt Val ue() - Fetchesthe value from afield and interpretsit as an integer.

Fi el dBool Val ue() - Used tointerpret integer fields as boolean values. It returnst r ue if thefield'svalueis
greater than zero, otherwisef al se.

Fi el dStringVal ue() - Retrievesthe value from afield and treats it as a string.

These hel per methods are designed to streamline data retrieval from database fields while ensuring appropriate interpretation
according to specific data types within PushButtonCM S models.

How to Create a Record

We're only setting up reading methods for now, with no write methods declared. However, we need to create the poll
somehow. Let's add a static method for this:

public static function Create(string $poll_question, int $created_by_user_id): self

return self::CreateWthParans([
"title' => $poll_question
"user_id" => $created_by_user_id

1),

This Cr eat e method will generate arow in the database table and return an object representing the created row. The
convention suggests using a Cr eat e method for object creation, allowing usagewithPol | : : Create(...).

Poll Answer M odel

Let'saso create asimilar class for poll answers, keeping the structure similar. The combined file will ook like this:

<?php

/*'k

* @rethod static self initSingleton($id)
* @rethod static self UsingCache($id)
* @rethod static self initNotExistent()
*/
cl ass Pol |l extends \PB\ DB\ ORM PBDBObj ect
{

public static function TableNane(): string

return 'polls'

}
public static function FieldNaneForID(): string

return 'id';

}

public static function FieldNanmeForTitle(): string

{

}

public function UserlID(): int
{

}

public static function Create(string $poll _question, int $created_by_user_id): self

return 'title';

return $this->FieldlntValue('user_id");

return self:: CreateWthParans([
"title =>$%pol | _questi on,
"user_id =>$created_by_user_id,

1),

/**

* @rethod static self initSingleton($id)

* @rethod static self Usi ngCache($id)
* @rethod static self initNotExistent()
*/
cl ass Pol | Answer extends \ PB\ DB\ ORM PBDBOhj ect
{

public static function Tabl eName(): string

return 'poll _answers';

public static function FieldNameForlD(): string

return 'id';

public static function FieldNanmeForTitle(): string

return 'title';

public function PollID(): int

return $this->FieldlntValue(' poll_id);

public function VotesCount(): int

return $this->FieldlntValue('votes');

public static function Create(Poll $poll, string $answer_title): self

return self::CreateWthParans([
"title =>%answer _title,
"pol | _id =>$pol | ->1D(),
'votes' =>0,

1);

Thisfile contains a DocBlock before every class, aiding development with widely-used IDEs. It introduces useful helper
functions for handling object initialization and cache usage, making object manipulation more efficient and consistent.

DocBlock Functions Explained

e i nitSingleton(<primary-key-val ue>) - Creates asingleton object associated with the provided primary
key value. Any subsequent objects with the same primary key initialized with i ni t Si ngl et on will reference the
same object instance, enhancing memory efficiency.

e Usi ngCache(<pri mary-key-val ue>) - Optimizes performance by caching object data. Newly created
objects with the specified primary key will be initialized using cached data. Be cautious: modifications to objects
won't update the cache, potentially leading to outdated data if not managed carefully.

e i ni t Not Exi st ent () - Facilitates the creation of an object instance pointing to a non-existent (not found) row in
the database table. This instance cannot be updated but is helpful for initializing objects when actual dataisn't present.

What's next

In the next chapter, we'll utilize these modelsto create polls.

Chapter 8 Writing Pdl Datatothe Database

Let's Update the Controller

The ‘create-poll’ controller within 'modules/poll-admin.php’ has undergone significant updates to handle the storage of poll-
related data into the database.

This revised controller has been designed to handle the input of poll questions and up to three answers, ensuring a robust
storage mechanism in the database using the Pol | and Pol | Answer models.

Let's delve into the specifics of these modifications and why they were structured as such:

pb_on_action('create-poll', function ()

if (PB::POST('question')->iskEnpty())
PB: : Errors()->AddError (' Question required');
if (PB::POST('answerl')->i sEnpty())
PB::Errors()->AddError (' First answer required');
if (PB::POST('answer2')->i senpty())
PB: : Errors()->AddError (' Second answer required');
if (IPB::Errors()->HasErrors())
{

/'l Creating a new poll entry
$poll = Poll:: Create(PB::POST(' question')->EscapedString(), PB::User()->1D));

/1 Creating entries for answers 1 and 2
Pol | Answer : : Creat e($pol I, PB::POST(' answer1')->EscapedStrin

9());
Pol | Answer:: Create($pol |, PB::POST('answer?2')->EscapedString());

/Il Creating an entry for answer 3 if provided
if (!'PB::POST(' answer3')->i sempty())
Pol | Answer:: Creat e($pol |, PB::POST(' answer3')->EscapedString());

pb_notify(' Poll created!"');
Redi rect: : Now(PBURL: : Current Modul e(* adnmin'));

}

el se
pb_set _action('add-poll");
1

Changes Explained

Handling Question and Answers

e $poll = Poll::Create(...):Thislineinitializesanew 'Poll' object, capturing the submitted question and
associating it with the currently logged-in user.

e Pol | Answer:: Create(...):Foreachanswer (answer 1 and answer 2), a corresponding 'Poll Answer' entry is
created, linked to the newly formed poll. If athird answer is provided in the form, another 'PollAnswer’ entry is
generated, continuing the association with the same poll.

The decision to create entries separately for each answer within the 'Poll Answer' table allows for scalability and ease of
retrieval when handling multiple answers associated with asingle poll. By structuring the code this way, the system
accommodates flexibility in the number of potential answers while maintaining a clear linkage to the corresponding poll.

Safeguarding Against HTML/JS I njection

When handling form inputs submitted by users, especially those destined for display on web pages, sanitizing the input data
iscrucial

The usage of PB: : POST(<var - nane>) - >EscapedSt ri ng() primarily serves as a safety measure against HTML and
JavaScript injections. It escapes characters in the string, ensuring that special characters (like angle brackets, quotes, etc.) are
properly handled.

In the context of form submissions for poll creation (Pol | and Pol | Answer models), using EscapedSt ri ng() onthe
POST data ensures that user-supplied values for the poll question and answers are sanitized against HTML/JS injections.
This practice helps to maintain the integrity and security of the application by neutralizing characters that could potentially
be exploited to inject harmful scripts or content into the webpage.

Future Expansion

It's essential to note that in upcoming developments, we'll enhance the functionality to handle an arbitrary number of answers
more conveniently. Thiswill streamline the process of managing polls with numerous answers, offering a more adaptable
solution for varied polling scenarios.

Chapter 9. Dedaring Ligsfor Data Retrieval

L everaging PBDBL st for Data Retrieval

To efficiently manage and retrieve data from the database, the PBDBLi st class provides aflexible and robust solution. It
offers methods for setting filters, specifying limits and offsets, and fetching data from the database.

In the context of our polls application, we have created two lists: Pol | Li st and Pol | Answer sLi st . These lists extend
the PBDBLI st class and declare the specific object class they handle using the Obj ect O assNane method.

Here is an overview of the methods provided by PBDBLI st .
Methodsfor Data Retrieval
Working with Preloaded Data

When working with preloaded data, set filters, limits, offsets, and use the Load() method to preload the filtered dataset.
Then, employ the following methods:

I t em($i ndex) : Retrieves a specific item at the given index.
Eachl t en() : Iterates over each iteminthelist.
Firstltem): Retrievesthefirstiteminthelist.

Last It en() : Retrievesthelast item in thelist.

Get | temN t hl D($i d) : Retrieves an item based on its ID.

Working with Large Datasets without Preloading

When dealing with large datasets without prel oading, set filters, limits, offsets, and use the Open() method to access the
dataset. Utilize:

e Fet ch() : Retrieves the next item in the filtered dataset.
Additional Methodsfor List Management

e SetFilterField...:Thesemethods set filters based on various field types, such as
Set Fi |l t er Fi el dl nt Val ue.

e OrderByFi el d($fi el d, $asc): Thismethod orders the list based on a specified field and in either ascending
or descending order.

These methods offer a powerful means of customizing and optimizing data retrieval. They are exclusively available for use
within PBDBL st descendant classes, ensuring that data logic remains encapsulated within the list classes.

Example | mplementation

Below are examples of two lists, Pol | Li st and Pol | Answer sLi st , each inheriting from PBDBLI st . These classes are
used to manage datasets for polls and their associated answers.

Let'sadd two liststo nodul es/ pr el oad/ pol | - nodel s. php.

use PB\ DB\ ORM PBDBLi st ;

/1 Previ ous

*

/

* % Ok X X Ok

*

*/

@ret hod
@ret hod
@ret hod
@ret hod
@ret hod
@ret hod

code. ..

Pol | 1tem $i ndex)

Pol | [] Eachltem()

Pol | | NULL Fet ch()

Pol | | NULL Firstltem()

Pol | | NULL Lastlten()

Pol I | NULL CetltemW thl D($id)

class Pol | Li st extends PBDBLi st

* 0% Ok X X F

*

*/

{

protected function Cbjectd assNanme():

public function FilterUser(int $user_id):

@ret hod
@ret hod
@ret hod
@ret hod
@ret hod
@ret hod

string

{
}

return Poll::class;

voi d

$t hi s->Set Fi | t er Fi el dl nt Val ue(' user_id",

Pol | Answer | ten($i ndex)

Pol | Answer[] Eachltem()

Pol | Answer | NULL Fet ch()

Pol | Answer | NULL Firstltem()

Pol | Answer | NULL Lastlten()

Pol | Answer | NULL Get|temW t hl D($i d)

cl ass Pol | AnswersLi st extends PBDBLI st

{

protected functi on bjectC assNane():
public function FilterPoll (int $poll _id):
{

public function O derByVotes(bool

string

return Pol | Answer: : cl ass;

}
voi d

$this->SetFilterFieldlntValue('poll_id',
}

$asc=true):

$t hi s->Or der ByFi el d(' votes', $asc);

$user_id);

$pol | _id);

voi d

Theselists allow for setting filters, sorting, and efficient data retrieval, enhancing the management of dataset interactions
within the PushButtonCM S environment.

PollList

Pol | Li st extends PBDBLi st , aclass that facilitates managing and retrieving data from a database. This particular list
deals specifically with polls. Let's explore its components:

The mandatory Cbj ect C assNane() method defines the class name of the objects this list holds, whichisPol | inthis
case. It ensures that the list manages and contains instances of the specified class.

protected function CbjectC assNane(): string

return Pol |l Answer: : cl ass;

The next method filters the list based on theuser _i d field. This function helps retrieve a subset of polls based on the user
context. It setsthe filter to restrict dataretrieval to only those polls associated with the provided user 1D.

public function FilterUser(int $user_id): void

$this->SetFilterFieldlntValue('user_id , S$user_id);

PollAnswersList
Similarly, Pol | Answer sLi st extends PBDBLi st and managesalist of Pol | Answer objects.

Likein Pol | Li st , the Obj ect Cl assNane() method specifies the class name of the objects thislist holds, whichis
Pol | Answer . It ensures that the list contains instances of the specified class.

This method filters the list based on the poll ID. It restricts data retrieval to poll answers associated with the provided poll
ID. It helpsto fetch answers specific to a particular poll.

public function FilterPoll (int $poll_id): void

$t hi s->SetFilterFieldlntValue('poll_id , $poll_id);

Let'sadd a method to order the list based on the number of votes. It arranges the poll answersin either ascending or
descending order based on the number of votes each answer has received. This function assists in presenting poll answers
based on their popularity or other voting criteria.

public function O derByVotes(bool $asc=true): void

$t hi s->Order ByFi el d(' votes', $asc);

e Order Byl D(bool $asc=tr ue): Ordersthelist based on the object IDs. It arranges the objectsin either
ascending ($asc=t r ue) or descending ($asc=f al se) order of their IDs.

e OrderByTitl e(bool $asc=true): Ordersthelist based on thetitles of the objects. It arranges the objectsin
either ascending or descending order of their titles.

What's Next

In the next chapters we'll use declared lists to dislpay admin interface and a voting page.

Chapter 10. DigplayingaPadll Lig in Admin Interface

To visualize the pall list in the administrative section, let'sintegrate the Gr i d Ul component. Begin by includingtheGri d

classin the 'use' section of your code in nrodul es/ pol | s-adm n. php.

use PB\U\Gid;

In the 'admin’ controller, enhance the interface by adding a button to view the polls:

pb_on_action('admin', function () {

Il

/1
1)

$b- '>i3ijtton(' View Pol I s', PBURL:: Current Modul e(' view polls'));

Now, implement the 'view-polls controller to render the list of polls. This controller manages the display of the polls within

agrid layout.

pb_on_action('viewpolls', function ()

1),

pb_title('Polls');
$ui = new Ul ();
$grid = new Gid();

/1 Colum Additions and Setup
$grid->AddCol ("title', 'Title');

$gri d->AddCol (' view , 'View on website');
$gri d->AddEdi t () ;

$gri d- >AddDel et e() ;

$pol I's = new Pol | List();

$pol I s->Fi I terUser (PB:: User()->1D());
$pol | s->Li mit (10);

$pol I s->OF fset (PB: : GET(' from)->AsInt());
$pol | s->Or der Byl D(f al se);

$pol | s->Load();

foreach ($polls->Eachltem() as $poll)
{

/'l Populate Gid with Poll Data

$grid->Label ("title', $poll->Title());
$grid->URL("title', PBURL::CurrentMdul e(' answers',
$grid->Label ('view, 'View on website');

$grid->URL(' view , PBURL:: Mdul e('polls',

$gri d- >NewRow() ;
}

i f ($grid->RowCount () === 0)

$gri d- >Si ngl eLi neLabel (' Not hi ng found');

$ui - >Add($gri d);
$ui - >AddPagi nat or For Li st ($pol | s);
$ui - >Qut put (true);

Retrieving Pollswith PollList

"details',

["id =>$polI->1D()]));
["id =>$pol I ->ID()]),

true);

Let'sconfigurethe Pol | Li st to display alimited set of polls, organized with the help of the paginator.

$poll's = new Pol I List();

$pol I s->Fi I terUser (PB::User()->1D());

$pol | s->Li mit (10);

$pol | s->Of f set (PB: : GET(' from)->AsAbsint());
$pol | s->Or der Byl D(f al se);

$pol | s->Load() ;

Let's break down the code:

Instantiating PollList

Here, anew instance of the Pol | Li st classis created, indicating that we are dealing with alist of polls previously declared
innodul es/ prel oad/ pol | - nodel s. php.

$poll's = new Pol | List();

Applying User Filter

TheFi | t er User method is used to filter the polls based on the current user's ID. This ensures that only polls associated
with the logged-in user are fetched.

$pol I s->Fi Il terUser (PB:: User()->1D());

Setting Data for Pagination

TheLi m t method restricts the number of pollsto be retrieved to some reasonable value. In this case, it limits the result to
10 polls.

$pol I s->Li mit (10);

The O f set method determines the starting point of the polls to be displayed. It uses the 'from' GET parameter, which is
automatically created by the paginator. The AsAbs| nt method ensures that the offset is a positive integer.

$pol | s->Of fset (PB: : GET(' from)->AsAbsint());

Ordering by ID

The Or der Byl D method specifies the sorting order for the polls. In this case, it sorts them by ID in descending order (
f al se indicates descending order).

$pol | s->Or der Byl D(f al se);

L oading Polls

Finally, the Load method executes the query and loads the polls based on the specified configuration.

$pol | s->Load() ;

This configuration preparesthe Pol | Li st to fetch alimited set of polls according to the specified criteria, facilitating an
organized and user-friendly display in the code below.

Iterating Through Pollsfor Display

To iterate through the list of pollsfetched using the Pol | Li st instance, the code utilizes aforeach loop with the
Eachl t em()

foreach ($polls->Eachlten() as $poll)

/1 Code bl ock to handl e each pol

TheEachl t enm() method is used within aforeach loop to iterate through each poll fetched by the Pol | Li st instance,
assigning each poll object to the variable $pol | . Inside this loop, you can access individual poll objects and perform
operations or display information related to each poll. For instance, you can access specific attributes of the poll, such asits
title, ID, or any other relevant data, to populate a user interface or perform specific actions for each poll in the list.

Grid Component

The Grid component in PushButtonCM S is a versatile tool used to construct and display tabular datain a structured layout. It
allows for the creation of tables with columns, each designed to showcase specific information. This component facilitates
various functionalities within the grid, such as adding columns, including edit and delete actions, and displaying data rows
efficiently. With features like pagination and customizable column settings, the Grid component provides a user-friendly
interface for managing and presenting data in a systematic manner.

Grid::AddCol

TheGri d: : AddCol () method is used to define and add columns to the grid layout. It specifies the columns to be
displayed in the grid, assigning each column alabel and an identifier. In the provided code, AddCol (" title',
"Title') createsacolumn labeled Title' that displaysthe titles of the polls.

Grid::AddEdit

TheGri d: : AddEdi t () method is employed to include an 'Edit' action within the grid, typically as a column and a
specific icon for each row. It sets up an editing feature that allows users to modify or update the content displayed in arow,
providing alink to trigger the editing functionality.

Grid::AddDelete

TheGri d: : AddDel et e() method is used to incorporate a'Delete’ action within the grid, often as a separate column. It
establishes a mechanism to remove or delete specific rows of data from the grid or the associated dataset. Typicaly, this

functionality would be activated through a button or link provided in the grid.

In the provided code:

AddCol ("title', '"Title") createsacolumn labeled 'Title to display thetitles of the polls.

AddCol (' view , 'View on website') createsacolumn labeled to alow to open apoll page for regular
visitors.

AddEdi t () configuresan 'Edit" action within the grid, presumably allowing usersto modify the poll details.
AddDel et e() setsup a'Delete action, likely enabling the admin to remove selected polls from the list.

Grid::Labd

TheGri d: : Label () method facilitates the insertion of text-based content into specific grid cells. It populates the
designated cell with the provided text, in this case, the title of the polls.

Grid::URL

TheGri d: : URL() method is used to generate clickable links within the grid layout. It adds a hyperlink to a particular cell,
enabling users to navigate to other pages or access further details associated with the polls.

In the context of this code:
e Gid::URL('"title', PBURL::CurrentMdul e('answers', ['id =>$poll->1D()])); setsup
alink that directsto the voting page for a specific poll within the administrative section.
e Gid::URL('view, PBURL::Mdule('polls', "details', ["id =>$poll->I1D)]),
true); configuresalink that leads to a standard view page on the website for agiven poll. The last parameter t r ue
means that the link should be open in a new tab or window of the browser.

Keep in mind that these pages haven't been created yet; we'll implement them in forthcoming chapters.
Finalizing Grid Row

Once al essential columns and data for a specific row in the grid have been added, the NewRow() method is employed to
denote the completion of the current row.

This method serves as a delimiter, signaling the conclusion of datainsertion for the current row in the grid layout, and
subsequently readies the grid to progress to the next row.

Paginator

The paginator feature plays a crucial role in managing and navigating through the poll list efficiently. It's conveniently added
using the following code:

$ui - >AddPagi nat or For Li st ($pol | s);

This paginator operates by creating a 'from' GET parameter, which serves as an offset within the list. It's seamlessly
integrated and initialized directly from the current PBDBL.ist, streamlining the process of navigating through multiple polls
without overwhelming the interface.

Chapter 11. Digplaying Pdl Detailsfor Vigtors

To showcase the details of apoll without the voting functionality at this stage, we'll create a view that presents the poll
guestion and its associated answers.

Preparing Poll AnswersList

Toretrieve the list of answers for a poll in aconvenient way, a method named Answer s() has been added to the Pol |
model. This method fetches the associated answers using Pol | Answer sLi st and arranges them by ID.

cl ass Pol | extends PBDBObj ect
{
/1 ... existing code ...
public function Answers(): Pol |l AnswersLi st

$pol | _answers = new Pol | AnswersList();

$pol | _answers->FilterPol | ($this->ID());
$pol | _answer s->Order Byl () ;
$pol | _answers->Load();

return $poll _answers;

Styling the Poll Display

A CSSfile, t henes/ def aul t/ css/ pol | s. css, has been created to stylize the poll elements.

. pol I -question {
font-size: 2em
paddi ng: 0.2em

. pol I -answer {
font-size: 1.5em
paddi ng: 0. lem lem

Details Controller

A new controller for the ‘'details action in nodul es/ pol | s. php has been set up to handle the display of poll details. It
fetches the poll and its associated answers, sets the title, and includes the CSSfile.

use PB\ PB;
pb_on_action('details', function ()
$pol | =new Pol | (PB: : GET('id")->AsInt());
if (!$poll->Exists())
return;

pb_title('Vote!');
pb_add_cssfile(' css/polls.css');

pb_tenplate(' polls');
pb_set _tpl _var('question', $poll->Title());

$answers=[];
foreach ($poll->Answers()->Eachlten() as $pol | _answer)

$answers[] [
"id' =>$pol | _answer->1D(),

"title' =>%pol | _answer->Title(),

l;
pb_set _tpl_var(' answers', $answers);

1),

The controller begins by retrieving the poll based on the provided 1D using the Poll model. If the requested poll does not
exist, the controller returns a 404 error result.

$pol | =new Pol | (PB: : GET('id")->AsInt());
if (!$poll->Exists())
return;
Adding CSSFile

Thepb_add_cssfil e(<pat h-wi t hi n-t hene>) function isused to include a CSSfile for styling the poll display.
This function looks for the specified CSSfile in the current theme's directory. If the file is not found in the current theme, it
defaults to using the same file located in the 'themes/default/ directory.

Inour caset henes/ def aul t/ css/ pol | s. css will beincluded.
Providing Data For the Template

This line specifies the template file named 'polls.tpl’ that will be used for rendering the content. It sets up the rendering
environment for the subsequent data.

pb_tenpl ate(' polls');

Here, thetitle of the poll fetched from the database is assigned to the template variable ‘question’. This will enable the
‘question’ variable to be accessed and used within the 'polls.tpl’ template.

pb_set _tpl _var('question', $poll->Title());

This part initializes an empty array named 'answers and populates it with details of each answer associated with the poll. It
iterates through the list of answersusing the Eachl t em() method provided by the Pol | Answer sLi st and constructs an
array containing each answer's ID and title.

$answers=[];
foreach ($poll->Answers()->Eachlten() as $pol | _answer)

$answer s[] =[
"id' =>$pol | _answer->1D(),
"title' =>%pol | _answer->Title(),

Finally, this line assigns the array of answers to the template variable answer s. It allowsthe answer s variable to be
accessed and utilized withinthepol | s. t pl template for displaying the list of answers associated with the poll.

pb_set _tpl_var(' answers', $answers);

This code prepares the necessary data to be displayed withinthepol | s. t pl template, ensuring the availability of the poll's
title and associated answers for rendering in the front-end.

View Template

Theview templateint henmes/ def aul t/ pol | s. t pl rendersthe poll question and its associated answers.

{if $maction eq 'details'}
{include file="bl ock_begin.tpl"}

<di v cl ass="pol | -questi on">{$m questi on}</div>

{foreach from$m answers itemranswer}
<div class="pol | -answer">{$answer.title}</div>
{/foreach}

{include file="block_end.tpl"}
{1if}

Here's a breakdown of the elements within this template:

e {if $maction eq 'details'}: Thisconditiona check verifies whether the current action is 'details to
ensure that the subsequent content is displayed only when the action matches 'details.

e {include file="block _begin.tpl"} and{include file="block_end.tpl"}:Theselinesare
responsible for including the 'block_begin.tpl' and ‘block_end.tpl' files of block enclosing templates.

e <div class="pol |l -question">{$m questi on}</di v>: Thissnippet renders the poll question. The
guestion's content is fetched from the template variable quest i on, which was set in the controller logic (
pb_set tpl_var (' question', $poll->Title());).

e {foreach from=$m answers itemranswer}: This'foreach' loop iteratesthrough theanswer s array,
assigned in the controller logic (pb_set _t pl _var (' answers', $answers);). For each answer in the
$m answer s array, it assigns the current answer to the variable answer .

e <div class="pol | -answer">{$answer.titl e}</div>:Insidetheloop, thislinedisplaysthetitle of
each answer in a separate 'poll-answer’ styled division. It fetches thetitle of each answer from the answer variable
within the loop.

Checking Created Code via I nterface Navigation

¢ Open the Modules Management interface within your application.

¢ From the Modules Management interface, locate and access the 'Polls Management' section.

¢ Within the 'Polls Management' section, there should be an option or button labeled 'View Polls. Click oniit.

e Click on View on website next to the specific poll title. This link should direct you to thedet ai | s page for that
particular poll.

What's Next

This chapter sets up the groundwork for displaying poll details, showcasing the question and associated answers in a stylized
format. The subsequent chapter will introduce the voting functionality.

Chapter 12. Implementing Voting System

To enable the voting mechanism, modifications are made to the Pol | Answer model, the addition of new controllers, and
enhancements to the existing controllers and views.

Details Controller Modification

The controller modification in the 'details' action of nodul es/ pr el oad/ pol | - nodel s. php has been enhanced to
provide necessary variables for the template:

pb_on_action('details', function ()

/1 Existing code..
pb_set _tpl_var('vote_url', PBURL::CurrentMdule('vote', ['id => $poll->1D)]));
pb_set _tpl_var('error_nessage', PB::Errors()->GetErrorsAsString());

1)

PB::Errors()->GetErrorsAsString() retrievesand concatenates any set errors as a string, or returns an empty
string if no errors have been set. This ensures that if any errors occur, they will be accessible in the template for display.

View Adjustment

The 'details view is enhanced to handle errors and display the voting form:

{if $maction eq "details"}
{include file="bl ock_begin.tpl"}

{if $merror_nessage neq ""}
<div class="alert alert-danger">{$m error_nessage}</di v>

{/if}

<f orm net hod="post" acti on="{$m vote_url}">
<di v class="pol | -question">{$m questi on}</div>

{foreach from$m answers itemranswer}
<di v cl ass="pol | -answer">
<l abel >
<input type="radi 0" nanme="answer_id" val ue="{$answer.id}" />
{$answer.title}
</ | abel >
</ div>
{/ foreach}

<i nput type="submt" val ue="Vote" />
</fornp

{include file="block_end.tpl"}
{1if}

This template displays the poll question and answer optionsin aform allowing usersto vote. If any error occurs during
voting, it will be displayed above the form.

PollAnswer Model Update

The Vot e() method is added to the Pol | Answer model inthe nodul es/ pr el oad/ pol | - nodel s. php file:

cl ass Pol | Answer extends PBDBObj ect
{

/1 Existing code...
public function Vote(): void

$this->Increment (' votes');

This method increments the 'votes field for the selected answer.

An dternative approach for achieving this could be through the Updat eVal ues() method, explicitly setting the ‘'votes
field:

public function Vote(): void

$t hi s- >Updat eVal ues([
' vot es' =>$t hi s- >Vot esCount () +1,

1);

However, using | ncr errent () isamore efficient and direct way to handle this particular task. It specifically handles
incrementing a numerical field, in this case, the 'votes' count, without the need for explicitly retrieving and setting the
updated value.

New Controllers

Two new controllers are created in nodul es/ pol | s. php to manage the voting process and display a Thank Y ou'
message upon successful voting.

The use block will ook like this:

use PB\ Conmon\ Redirect;
use PB\ Cor e\ PBURL;

use PB\ PB;

use PB\ U\ Buttons;

use PB\U\ U ;

vote

The 'vote' controller manages the voting process:

pb_on_action('vote', function ()

$poll = new Pol | (PB:: GET('id')->Aslnt());
if (!$poll->Exists())
return;

$sel ected_answer _id = PB:: POST(' answer _id")->Aslnt();
$answer = $pol | - >Answer s() - >Get It emW t hl D($sel ect ed_answer _i d);
/1 If the selected answer exists, increnent its vote count and redirect to 'thank-you' contro
if ($answer == NULL)
{
$answer->Vote(); // Increment the vote count for the sel ected answer
Redi rect : : Now(PBURL: : Cur r ent Modul e(' t hank-you')); // Redirect to the 'thank-you' cont

el se

/1 If no answer is selected, set an error nessage and switch to the 'details' contro
PB:: Errors()->AddError (' Pl ease sel ect an answer');
pb_set __action('details');

1),

In the absence of a selected answer, this controller will set an error message and switch the active action to 'details' to
execute that controller after the current one finishes.

The order of declaring controllersisimportant. Ensure that 'vote' is declared before 'details' to guarantee proper execution of
the 'details controller in case of an error.

If no errors occur, the selected answer's vote count will increment, and the user will be redirected to the ‘thank-you' controller
within the current module.

We attempted to retrieve the selected answer ID using PB: : POST(' answer _i d') - >Asl nt () . The method
PBDBLi st :: Getltem t hl D(<obj ect -i d>) will return the object with the provided ID from prel oaded items or
NULL if not found.

Remember, the template file contains aradio item:

<input type="radi 0" nanme="answer_i d" val ue="{$answer.id}" />

Thisradio input allows users to select an answer by its 1D for voting purposes.

thank-you

This controller is responsible for displaying a ' Thank Y ou' message after a successful vote. To streamline and expedite the
development process, a Ul component is utilized without the need for a specific template.

pb_on_action('thank-you', function ()

pb_title(' Thank You');

$ui = new Ul ()

$ui ->Not i ficati onSuccess(' You voted successful ly!");

$b = new Buttons();

$b->Button(' View polls', PBURL:: CurrentMdul e('view));
$ui - >Add($b) ;

$ui - >Qut put (true);

1),

Additional information about Ul::Notification components:

1. U ::NotificationSuccess(<nmessage>): Thismethod is used to display a success message or notification
to the user.

2. U ::NotificationError(<message>) isused to display error messages or notifications to users.

3. U ::NotificationWarni ng(<message>) indicates situations where there might not be an error but warns
users about potential issues or important information.

4, U ::Notificationlnfo(<nessage>) doesn't signify an error or warning but offers additional information or
guidance.

These natification methods can be used to convey different types of messages to users, allowing for clear and concise
communication based on the nature of the information being presented.

Y our instructions are clear and concise. However, |'ve made afew minor adjustments for clarity and completeness:

Test it Out

Now, you can test the functionality. Navigate to the poll, select an answer, and click the 'V ote' button.
If everything is successful, you should be automatically redirected to the "Thank Y ou' page.
To confirm that the voting process has worked, check the database to ensure that the vot es field has been updated.

It'simportant to note that in this example, you can vote as many times as you want. While thisis suitable for testing
purposes, a real-world voting application should implement proper counting mechanisms. However, for the sake of
simplicity, we won't cover this aspect in our example.

Chapter 13. Managing Answversin Admin Interface

Managing answers associated with pollsis crucial for maintaining accurate data within the administrative section. Let's
implement functionalities to add, edit, and delete answers for polls.

Extending the PollAnswer Model

We expand the Pol | Answer model by introducing a method named Set Answer W t hVot es. This method alowsthe
setting of anew answer title along with the votes count for a specific answer within the system.

cl ass Pol | Answer extends PBDBOhj ect {
/1 Existing code...
public function Set Answer Wt hVotes(string $new answer _title, int $new votes_count): void

$t hi s- >Updat eVal ues([
"title' => $new answer_title,
'votes' => $new votes_count,

1);

This method facilitates the modification of an answer'stitle and votes count simultaneously, ensuring accurate updates within
the database.

Controllersfor Managing Answers

These controllers streamline the management of answers associated with polls in the administrative section, ensuring smooth
CRUD operations for answers within the system.

answers

Displays a structured list of answers for a specific poll in an admin-friendly grid format. The structureis generally similar to
thevi ew pol | s controller described earlier, but with the incorporation of new functionalities.

e PB: : Show404I f Enpt y(<obj ect >) isutilized to display a404 error page if the provided object is empty or not
found. This ensures a smoother user experience when handling missing or erroneous data. It's crucia to note that if
the 404 error page is executed due to the absence of the poll or answer, the subsequent code following
PB: : Show4041 f Enpt y() won't be executed.

e PB: : BreadCr unbs() generates breadcrumbsto aid in navigation. In this context, it is used to create a trail
allowing easy return to the main polls section.

e PBURL: : Current () returnsthe current URL. Itisusedin PBURL: : Cur r ent Modul e() fortheedi t and
del et e columnsto provide a URL to return to after these actions.

pb_on_action('answers', function ()

$pol |l = new Pol | (PB:: GET('id')->Aslnt());
PB: : Show404I f Enpt y($pol |) ;

PB: : BreadCr unbs()
->Add(" Pol I s', PBURL:: Current Modul e(' viewpolls'))
->AddCurrent ();

pb_title(' Answers - '.$poll->Title());
$ui =new Ul ();

$grid=new Grid();

$gri d->AddCol ('index', '#');

$gri d->AddCol (' answer', ' Answer');

$gri d- >AddCol (' votes', 'Votes');

$gri d- >AddEdi t () ;

$gri d->AddDel et e() ;

foreach ($poll->Answers()->Eachltem) as $i ndex=>%answer)

$gri d->Label ('index', $index+1);
$gri d- >Label (' answer', $answer->Title());
$gri d->Label (' votes', $answer->VotesCount());
$grid->URL("edit', PBURL:: CurrentMdul e(' edit-answer',

["id =>$pol|->1D(), 'answer'=>$answer->ID()], PBURL::Current()));
$grid->URL(' del ete', PBURL:: Current Modul e(' del et e-answer',

["id =>$pol|->ID(), "answer'=>$answer->ID()], PBURL::Current()));
$gri d- >NewRow() ;

}
i f ($grid->RowCount ()===0)

$gri d- >Si ngl eLi neLabel (' Not hi ng found');
$ui - >Add($grid);

$b=new Buttons();

$b- >Button(' Add Answer', PBURL:: Current Modul e(' add- answer ',
["id =>$poll->1D()], PBURL::Current()));

$ui - >Add($b) ;

$ui - >Qut put (true);
)

This controller provides administrators with an organized view of answers associated with a specific poll, offering seamless
navigation and functionality for effective management.

delete-answer

This controller handles the deletion of a specific answer associated with a poll.

pb_on_action(' del ete-answer', function ()

$poll = new Pol | (PB:: GET('id")->Aslnt());

PB: : Show4041 f Enpt y($pol |');

$answer =$pol | - >Answers()->CGet I temWt hl D(PB: : GET(' answer')->Asint());
PB: : Show404I f Enpt y($answer) ;

$answer - >Rerove() ;

Redi rect:: ReturnToNow() ;

1),

The Renpve() method effectively removes the associated row for the object within the database. However, it's essential to
note that even after calling Renove() , the object in memory persists but cannot execute any database-rel ated operations.

Redi rect: : Ret ur nToNow() triggersanimmediate redirection using ther et ur nt o parameter present in the current
GET request. If the returnto parameter is set to a specific URL, the user will be redirected there instantly.

You can set up ther et ur nt o parameter in the URL manually or utilize helper functions. Both PBURL: : Modul e() and
PBURL: : Cur r ent Modul e() havealast parameter to set up the return URL, offering flexibility in managing redirection
after actions.

The content looks mostly accurate. Just a couple of adjustments for clarity:

Create Answer Controllers

In this section, two controllers handle the addition of new answersto apoll. I't important to declare cr eat e- answer
before add- answer to maintain a proper error handling.

Create-answer

Responsible for creating a new answer for a specific poll.

pb_on_action('create-answer', function ()

$poll = new Pol | (PB:: GET('id")->Aslnt());
PB: : Show404I f Enpt y($pol |) ;
PB: : Errors()->Swi tchActi onOnError (' add-answer');
if (PB::POST('answer')->i senpty())

PB: : Errors()->AddError (' Answer required');
el se

{
Pol | Answer : : Creat e($pol |, PB:: POST(' answer')->EscapedString());

Redi rect:: ReturnToNow() ;
1)

Inthiscontroller, PB: : Errors()->Sw t chActi onOnError (<acti on>) setsan alternative action in case an error
occurs during the execution of a specific action. If PB: : Err or s() - >AddEr r or () iscaled or has already been called, it
triggers a switch to the specified action (it will be executed upon the finishing of currrent controller).

add-answer

Displays aform to add a new answer to a poll.

pb_on_action(' add-answer', function ()

$poll = new Pol | (PB:: GET('id')->Aslnt());

PB: : Show404I f Enpt y($pol |);

pb_title(' Add Answer to Poll - '.$poll->Title());
$ui =new Ul ();

PB: : Errors()->Di splayU Errors($ui);
$f =new For m(PBURL: : Current Wt hActi on(' create-answer'));
$f - >AddText (' answer', 'Answer', true)
->Set Focus();
$f - >LoadVal uesArray(PB: : Request s()->POSTAsArray());
$ui - >Add($f) ;
$ui - >Qut put (true);
1

Inthiscode, PBURL: : Current Wt hActi on() generatesaURL with an updated action parameter based on the current
URL query. It's a convenient method to pass parameters between multiple controllers when they share the same parameters
except for the action.

Update Answer Controllers

These controllers efficiently handle the editing and updating of existing answers associated with polls, providing a
straightforward user interface for such modifications.

update-answer

Manages the update process for an existing answer, similar to the approach takenin cr eat e- answer and cr eat e- pol |

Two fields, namely answer and vot es, are used for validation and to update the respective properties simultaneously.
While this approach might differ in areal-life application where more intricate data handling could be implemented, this
demonstration illustrates how to update arich model.

pb_on_action(' update-answer', function ()

$poll = new Pol | (PB:: GET('id)->Asint());
PB: : Show404I f Enpt y($pol |);
$answer =$pol | - >Answer s() - >Get | t emW t hl D(PB: : GET(' answer')->AsInt ());
PB: : Show404I f Enpt y($answer) ;
PB: : Errors()->Sw tchActi onOnError (' edit-answer');
if (PB::POST('answer')->i seEnpty())
PB: : Errors()->AddError (' Answer required');
el seif (PB::POST(' votes')->Aslnt()<0)
PB: : Errors()->AddError (' Wong votes count');

el se
{
$answer - >Set Answer W t hVot es(
PB: : POST(' answer') - >EscapedString(),
PB: : POST(' votes')->AsInt ()
)
Redi rect: : ReturnToNow() ;
}
1
edit-answer

Renders aform for editing an existing answer.

pb_on_action(' edit-answer', function ()

1),

$poll = new Pol | (PB:: GET('id)->Aslnt());
PB: : Show4041 f Enpt y($pol |);
$answer =$pol | - >Answers() ->GetltemN thl D(PB: : GET(' answer')->Asint());
PB: : Show404I f Enpt y($answer) ;
pb_title('Edit Answer');
$ui =new Ul ();
PB:: Errors()->DisplayU Errors($ui);
$f =new For m(PBURL: : Current Wt hActi on(' updat e- answer'));
$f - >AddText (' answer', ' Answer', true)
->W t hVal ue($answer->Titl e())
- >Set Focus() ;
$f - >AddText (' votes', 'Votes Count', true)
->W t hVal ue($answer - >Vot esCount ()) ;
$f - >LoadVal uesArray(PB: : Request s()->POSTAsArray());
$ui - >Add($f) ;
$ui - >Qut put (true);

In the code, For m : Wt hVal ue() isused to prefill the form fields with the existing data when editing an answer.
Additionally, the LoadVal uesArray() method isused to potentially overwrite pre-filled valuesif an error occurred and
the POST data contains information sent with the form. Ensure that the LoadVal uesArr ay() methodis called after all

W t hVal ue() methodsto avoid overwriting pre-filled valuesincorrectly.

What's Next

We are amost done with polls management. Let's make final adjustments and review.

Chapter 14. Final Stepsin PollsM anagement Module

For now, we have aimost completed everything. There's asmall adjustment needed - the ability to update the poll question
and delete the poll. So, we should add some new controllersto the nodul es/ pol | s- adm n. php file and make slight
modifications to the poll list controller.

Update Poll Controllers

Modify Poll List

Let's update the poll list by incorporating URLs for theedi t and del et e columns. Also, here's an example demonstrating
how to configure a custom deletion confirmation for individual rows using Cust onvessageBox(<pr onpt >) .
Additionally, we'll place ablock for adding a new poll below the table and a paginator for user convenience.

pb_on_action('viewpolls', function ()

/'l Existing code...
foreach ($polls->Eachlten() as $poll)
{

/1 Existing code...
$grid->URL("edit', PBURL::CurrentModul e('edit-poll",
["id =>$poll->1D)], PBURL::Current()));
$grid->URL(' del ete', PBURL:: Current Modul e(' del ete-pol ",
["id =>$pol|->1D()], PBURL::Current()));
$gri d- >Cust onMessageBox(' del ete', 'Are you sure to delete this poll?');
$gri d- >NewRow() ;

}
/'l Existing code...
$b=new But t ons();
$b->Button(' Add Pol ', PBURL:: CurrentMdul e('add-poll', [], PBURL::Current()));
$ui - >Add($b) ;

$ui - >Qut put (true);
s

edit-poll controller

Theedi t - pol | controller utilizes a POSTFor m which functions similarly to aregular For mcomponent but is
specifically designed for POST requests. Notably, it automatically loads current POST values into the form before invoking
the Ul, similar to the earlier manual loading with $f - >LoadVal uesArray(PB: : Request s() -

>POSTAsArray()); .

pb_on_action('edit-poll', function ()

$poll = new Pol | (PB:: GET('id")->Aslnt());

PB: : Show4041 f Enpt y($pol |);

pb_title('Edit Poll"');

$ui =new Ul ();

PB: : Errors()->DisplayU Errors($ui);

$f =new POSTFor m(PBURL: : Current Wt hActi on(' update-poll'));
$f - >AddText (' question', 'Question', true)

->Wt hVal ue($pol I ->Title())
- >Set Focus() ;
$ui - >Add($f) ;
$ui - >Qut put (true);
1

update-poll controller

Theupdat e- pol | controller operates similarly to previous examples. However, as the 'question’ field is designated as a
Ti t| e forthePol | model, we utilize the default Set Ti t | e(<new- val ue>) method to update it.

pb_on_action(' update-poll', function ()

$poll = new Pol | (PB:: GET('id")->Aslnt());
PB: : Show404I f Enpt y($pol |);
PB: : Errors()->Sw tchActi onOnError('edit-poll");
if (PB::POST('question')->isEmty())

PB: : Errors()->AddError (' Question required');
el se

$pol | ->Set Titl e(PB: : POST(' question')->EscapedString());
Redi rect : : Ret urnToNow() ;

1),

Delete the Pall

At this point, we need to delete the poll, and the controller for it is quite similar to what we've done before.

pb_on_action('delete-poll', function ()

$pol|l = new Pol | (PB:: GET('id')->Aslnt());
PB: : Show404I f Enpt y($pol |);
$pol | - >Renove();
Redi rect: : ReturnToNow() ;
1

What we need to do is modify the Pol | model to handle the proper deletion process. Therecordsinthepol | _answer s
table are linked to this poll, so we need to delete them before removing the record from the pol | s table.

There are two ways to achieve this. One approach is to configure the database tables for cascade deletion, allowing the
RDBM S to manage deletion automatically.

However, this may not always be the best solution, especially when additional actions are necessary, such as removing
associated files or making external API calls.

Therefore, we'll handle it programmatically within our Pol | model by declaring the OnRenoveBef oreSt art ()
method. This method is automatically invoked before the actual deletion of arecord for aPol | model.

cl ass Poll extends PBDBbj ect

{
/1 Existing code...

protected functi on OnRenoveBeforeStart(): void

foreach ($this->Answers()->Eachlten() as $answer)
$answer - >Renove();

This code ensures that all associated answers are deleted before removing the poll record.

Final Adjustmentsto the Code

To enhance the future edit flexibility, well replace all For melements in our example with POSTFor m
Also, let's add some more breadcrumbs for better user experience.
Additionally, we'll update the redirection inthecr eat e- pol | controller using

Redi rect : : NowRet ur nToOr (<def aul t - ur| >) . This method redirects to the provided r et ur nt o URL or the
default URL if no redirection URL is provided.

Redi rect : : NowRet ur nToOr (PBURL: : Current Modul e(' adnmin'));

We also want to restrict unauthorized users from managing polls. To accomplish this, we'll add the following block right
after the use section in the modul es/ pol | s- adni n. php file:

PBAccess: : Enf orcelLogi n();

This function redirects visitors to the sign-in form if they are not logged in.
What Could Be Done?

We could further enhance security by verifying the user associated with the poll using PBAccess: : User Requi r ed. This
function redirects anyone other than the specified user (and admin) to the 'Access Denied' page.

pb_on_action('edit-poll', function ()

$poll = new Pol | (PB:: GET('id')->Aslnt());
PB: : Show404I f Enpt y($pol |);

PBAccess: : User Requi r ed($pol | - >User 1 D()) ;
/...

DK

However, for the sake of simplicity, we won't implement this here.
What Should Be Done?

If you wish for regular users to create and manage their polls, consider placing alink i ndex. php?mepol | s-
adm n&d=vi ew pol | s inthe navigation menu for logged-in users.

What's Next

Please review the finalized version of modul es/ pol | s- admi n. php.

Chapter 15. Finalized PallsAdminidration Module

<?php

/*
* Modul e Nane: Pol |s Managenent
*/

use PB\ Access\ PBAccess;
use PB\ Common\ Redi rect ;
use PB\ Cor e\ PBURL;

use PB\ PB;

use PB\ U\ Buttons;

use PB\U\Gid;

use PB\ U\ POSTFor m

use PB\U\ U ;

PBAccess: : Enf or ceLogi n();
pb_on_action(' del ete-answer', function ()

$poll = new Pol | (PB:: GET('id")->Aslnt());
PB: : Show4041 f Enpt y($pol |);
$answer =$pol | - >Answer s() ->GetltemN thl D(PB: : GET(' answer')->Asint());
PB: : Show404I f Enpt y($answer) ;
$answer - >Rermove() ;
Redi rect:: ReturnToNow() ;
1)

pb_on_action(' create-answer', function ()

$poll = new Pol | (PB:: GET('id")->Aslnt());
PB: : Show4041 f Enpt y($pol |');
PB: : Errors()->Swi tchActi onOnError (' add-answer');
if (PB::POST('answer')->i senpty())

PB: : Errors()->AddError (' Answer required');
el se

Pol | Answer:: Creat e($pol |, PB::POST(' answer')->EscapedString());
Redi rect : : Ret urnToNow() ;

1)
pb_on_action(' add-answer', function ()

$pol|l = new Pol | (PB:: GET('id')->Aslnt());

PB: : Show404I f Enpt y($pol |) ;

PB: : BreadCr unbs()
->Add(" Pol I s', PBURL:: Current Modul e(' vi ew-polls'))
->Add($pol I ->Title(), PBURL::CurrentMdul e('answers', ['id =>$poll->1D()]))
->AddCurrent ();

pb_title(' Add Answer to Poll - '.$poll->Title());

$ui =new Ul ();

PB: : Errors()->Di splayU Errors($ui);

$f =new POSTFor m(PBURL: : Current Wt hActi on(' create-answer'));

$f - >AddText (' answer', 'Answer', true)
->Set Focus() ;

$ui - >Add($f) ;

$ui - >Qut put (true);

1)

pb_on_action(' updat e-answer', function ()

$poll = new Pol | (PB:: GET('id")->Aslnt());
PB: : Show404I f Enpt y($pol |);
$answer =$pol | - >Answer s()->CGet Il temW t hl D(PB: : GET(' answer')->Asint());
PB: : Show404I f Enpt y($answer) ;
PB:: Errors()->Sw tchActi onOnError (' edit-answer');
if (PB::POST('answer')->i senpty())
PB: : Errors()->AddError (' Answer required');
el seif (PB::POST('votes')->Aslnt()<0)
PB: : Errors()->AddError (' Wong votes count');

1),

el se
$answer - >Set Answer W t hVot es(
PB: : POST(' answer ') - >EscapedString(),
PB: : POST(' votes')->Aslnt()

)
Redi rect : : Ret ur nToNow() ;

pb_on_action('edit-answer', function ()

DK

$poll = new Pol | (PB:: GET('id)->Aslnt());
PB: : Show404I f Enpt y($pol |) ;
$answer =$pol | - >Answer s() ->GetltemN thl D(PB: : GET(' answer')->Asint());
PB: : Show404I f Enpt y($answer) ;
PB: : BreadCr unbs()
->Add("' Pol I s', PBURL:: Current Modul e(' vi ew-polls'))
->Add($pol I ->Title(), PBURL:: CurrentMdul e(' answers', ['id =>$poll->1D()]))
->AddCurrent ();
pb_title('Edit Answer');
$ui =new Ul ();
PB: : Errors()->Di splayU Errors($ui);
$f =new POSTFor m(PBURL: : Current Wt hActi on(' updat e-answer'));
$f - >AddText (' answer', 'Answer', true)
->W t hVal ue($answer->Titl e())
- >Set Focus();
$f - >AddText (' votes', 'Votes Count', true)
->W t hVal ue($answer - >Vot esCount ()) ;
$f - >LoadVal uesArray(PB: : Request s() - >POSTAsArray());
$ui - >Add($f) ;
$ui - >Qut put (true);

pb_on_action('answers', function ()

IDF

$poll = new Pol | (PB:: GET('id")->Aslnt());
PB: : Show4041 f Enpt y($pol |);

PB: : BreadCr unbs()
->Add("' Pol I s', PBURL:: Current Modul e(' viewpolls'))
->AddCurrent ();

pb_title(' Answers - '.$poll->Title());
$ui =new Ul ();

$grid=new Gid();
$gri d->AddCol (' i ndex', '#');
$gri d- >AddCol (' answer', ' Answer');
$gri d- >AddCol (' votes', 'Votes');
$gri d- >AddEdi t () ;
$gri d- >AddDel et e() ;
foreach ($poll->Answers()->Eachlten() as $i ndex=>$answer)
{
$gri d->Label ('index', $index+1);
$gri d->Label (' answer', S$answer->Title());
$grid->Label (' votes', $answer->VotesCount());
$grid->URL("edit', PBURL:: CurrentMdul e(' edit-answer',
["id =>$pol|->1D(), 'answer'=>%answer->ID()], PBURL::Current()));
$grid->URL("' del ete', PBURL:: CurrentMdul e(' del et e-answer',
["id =>$pol|->I1D(), 'answer'=>$answer->ID()], PBURL::Current()));
$gri d- >NewRow() ;

}
i f ($grid->RowCount ()===0)

$gri d- >Si ngl eLi neLabel (' Not hi ng found');
$ui - >Add($gri d);

$b=new But tons();

$b->Butt on(' Add Answer', PBURL:: Current Modul e(' add- answer ',
["id =>$pol|->1D()], PBURL::Current()));

$ui - >Add($b) ;

$ui - >CQut put (true);

pb_on_action(' delete-poll', function ()

$poll = new Pol | (PB:: GET('id")->Aslnt());
PB: : Show404I f Enpt y($pol |) ;

$pol | - >Renove();
Redi rect: : ReturnToNow() ;
1)

pb_on_action(' update-poll', function ()

$poll = new Pol | (PB:: GET('id')->Aslnt());
PB: : Show404I f Enpt y($pol |);
PB:: Errors()->Sw tchActi onOnError('edit-poll");
if (PB::POST(' question')->i seEnpty())

PB: : Errors()->AddError (' Question required');
el se

$pol | ->Set Titl e(PB: : POST(' question')->EscapedString());
Redi rect : : Ret ur nToNow() ;

)
pb_on_action('edit-poll', function ()

$poll = new Pol | (PB:: GET('id)->Aslnt());

PB: : Show404I f Enpt y($pol |);

pb_title('Edit Poll");

$ui =new Ul ();

PB: : Errors()->Di splayU Errors($ui);

$f =new POSTFor m(PBURL: : Current Wt hActi on(' update-poll'));

$f - >AddText (' question', 'Question', true)
->W t hVal ue($pol | ->Title())
- >Set Focus() ;

$ui - >Add($f);

$ui - >Qut put (true);

1

pb_on_action('create-poll', function ()

if (PB::POST(' question')->i sEnpty())

PB: : Errors()->AddError (' Question required');
if (PB::POST('answerl')->i senpty())

PB:: Errors()->AddError (' First answer required');
if (PB::POST('answer2')->i senpty())

PB: : Errors()->AddError (' Second answer required');
if (!PB::Errors()->HasErrors())

$pol | =Pol | : : Creat e(PB: : POST(' questi on')->EscapedString(), PB::User()->1D));
Pol I Answer : : Creat e($pol |, PB::POST(' answer 1')->EscapedString());
Pol | Answer:: Create($pol |, PB::POST('answer?2')->EscapedString());
if (!'PB::POST(' answer3')->i sempty())
Pol | Answer:: Create($pol |, PB::POST('answer3')->EscapedString());

pb_notify('Poll created!"');
Redi rect: : NowRet ur nToOr (PBURL: : Current Modul e(' adnmin'));

}

el se
pb_set _action('add-poll");
1

pb_on_action('add-poll', function ()

pb_title(' Add Poll");
$ui =new Ul ();
PB: : Errors()->DisplayU Errors($ui);
$f =new POSTFor m(PBURL: : Curr ent Modul e(' create-poll'));
$f - >AddText (' question', 'Poll Question', true)
- >Set Focus();
$f - >AddText (' answer1', 'Answer 1', true);
$f - >AddText (' answer2', 'Answer 2',
$f - >AddText (' answer3', ' Answer 3');
$ui - >Add($f);
$ui - >Qut put (true);
s

pb_on_action('viewpolls', function ()

pb_title('Polls");
$ui =new Ul ();
$gri d=new Gid();

/1 Columm Additions and Setup
$gri d->AddCol ("title', 'Title");
$gri d->AddCol (' view , 'View on website');

1),

$gri d- >AddEdi t () ;
$gri d->AddDel et e();

$pol | s=new Pol | Li st ();

$pol I s->FilterUser (PB:: User()->1D));

$pol I s->Lim t (10);

$pol | s->COf fset (PB: : GET(' from) ->AsAbslInt());
$pol | s->Order Byl D(f al se);

$pol | s->Load();

foreach ($polls->Eachlten() as $poll)
{

/! Populate Gid with Poll Data
$grid->Label ("title', $poll->Title());
$grid->URL('title', PBURL::CurrentMdul e('answers', ['id =>$poll->ID()]));
$gri d->Label ('view, 'View on website');
$grid->URL("'view , PBURL::Mdule('polls', 'details',
["id =>$poll->1D()]), true);
$grid->URL("edit', PBURL::CurrentMbdul e('edit-poll",
["id =>$pol|->1D()], PBURL::Current()));
$grid->URL(' del ete', PBURL:: Current Modul e(' del ete-pol ",
["id =>$poll->ID()], PBURL::Current()));
$gri d- >Cust omVessageBox(' del ete', '"Are you sure to delete this poll?');
$gri d- >NewRow() ;
}

i f ($grid->RowCount ()===0)
$gri d- >Si ngl eLi neLabel (' Not hi ng found');

$ui - >Add($grid);
$ui - >AddPagi nat or For Li st ($pol | s);

$b=new But t ons();
$b->Button(' Add Pol ', PBURL:: CurrentMdul e('add-poll"', [], PBURL::Current()));
$ui - >Add($b) ;

$ui ->Qut put (true);

pb_on_action('admin', function ()

pb_title(' Polls Managenent');

$ui =new Ul ();

$b=new But tons();

$b->Button(' Add Pol|', PBURL:: Current Modul e(' add-poll'));
$b->Button(' View Pol I s', PBURL:: Current Mdul e(' viewpolls'));
$ui - >Add($b) ;

$ui ->Qut put (true);

1
pb_on_action('install', function ()
PBAccess: : Adnmi nRequi red() ;
pb_regi ster _nodul e(pb_current _nodul e(), 'Polls Managenent');
pb_regi ster_aut ol oad(' pol | -nodel s');
execsql (" CREATE TABLE "polls® (
“id int(11) unsigned NOT NULL AUTO | NCREMENT,
“title varchar(255) NOT NULL,
“user_id int(11) unsigned NOT NULL DEFAULT 'O0',
PRI MARY KEY (“id)) ENG NE=MyI SAM DEFAULT CHARSET=utf8;");
execsql (" CREATE TABLE " pol | _answers’
“id int(11) unsigned NOT NULL AUTO_| NCREMENT,
“poll _id int(11l) unsigned NOT NULL DEFAULT '0',
“title varchar(255) NOT NULL, “votes® int(11l) unsigned NOT NULL DEFAULT 'O0',
PRI MARY KEY ("id'), KEY “poll_id (“poll_id, ‘title))
ENG NE=My| SAM DEFAULT CHARSET=ut f8;");
Redi rect : : Now(PBURL: : Curr ent Modul e(' adnmin'));
1
pb_on_action('uninstall', function ()

1)

PBAccess: : Admi nRequi red();

pb_unregi st er _nodul e(pb_current _nodul e());
pb_unregi st er _aut ol oad("' pol | - nodel s');

execsql ("DROP TABLE "pol | _answers™;");

execsql ("DROP TABLE “polls™;");

Redi rect : : Now(PBURL: : Adm nModul esManagenent ()) ;

Chapter 16. PdlisIndexfor Vistors

Presently, we've established the functions for managing polls. It's time to create an index of polls for visitors, granting them
access to the latest polls available for voting. Additionally, let's incorporate poll results on the ‘thank you' page.

Polls I ndex

Controller Update

To enhance the visitor-facing controller for the 'view' action in the nodul es/ pol | s. php file, well transition from abasic
'Hello World' example to real functionality.

pb_on_action('view, function ()

pb_title('Polls");
pb_tenpl ate(' polls');

$poll's = new Pol | List();

$pol | s->Di sabl eNoFi | t er sBl ocker ();

$pol | s->Li it (10);

$pol I s->COf fset (PB: : GET(' from)->AsAbsint());
$pol | s->Order Byl D(f al se);

$pol | s->Load();

$polls_data = [];
foreach ($polls->Eachlten() as $poll)

$pol Is_data[] = [
"title' => $poll->Title(),
"vote_url' => PBURL::Current Modul e('details', ['id => $poll->ID()]),

}
pb_set tpl_var('polls', $polls_data);

pb_pagination_init_for_list($polls);
1)

Loading thelist dataistheinitial step.

$polls = new Pol | List();

$pol | s->Di sabl eNoFi | t er sBl ocker ();

$pol I s->Linmt (10);

$pol | s->Of fset (PB: : GET(' from)->AsAbsIint());
$pol | s->Order Byl D(f al se);

$pol | s->Load();

This process resembles what was done in the admin section. However, since there are no filters required here, we used the
Di sabl eNoFi | t er sBl ocker () method. The PBDBLi st includes abuilt-in blocker to prevent overloading the
database with queries lacking filters.

Then, we assign the poll data for the view and initialize the pagination with thepb_pagi nation_init_for _Ii st
helper.

pb_pagination_init_for_list($polls);

To initialize pagination manually, we could use pb_pagi nati on_init(<total -count>, <current-limt>,
<current-offset> <customurl>).

View Update

Theview int henes/ def aul t/ pol I s. t pl aso requires an update.

{if $maction eq "view'}
{include file="bl ock_begin.tpl"}

<ul class="polls-list-container">
{foreach frome$m polls itemspol |}
{$poll.title}</1i>
{/ foreach}
</ ul >
{include file="paginator.tpl"}

{include file="bl ock_end.tpl"}
{lif}

This code shares similarities with what we've previously built. However, we need to integrate a paginator here. We'll include
a pagination block using the following code.

{include file="paginator.tpl"}

Thank You with Vote Results

WEe're bypassing the use of $pol | - >Answer s() to load the answers because we require a custom order. Loading answers
mirrors what we did with polls, but we won't be implementing pagination here since there won't be a large volume of
answers.

pb_on_action('thank-you', function ()

$poll = new Pol | (PB:: GET('id")->Aslnt());
PB: : Show4041 f Enpt y($pol |');

pb_title(' Thank You');
pb_tenpl ate(' polls")

$pol | _answers = new Pol | Answer sLi st ()
answer s->Fi |l terPol | ($pol | ->1D());

$pol | _
$pol | _answer s- >Or der ByVot es(f al se);
$pol | _answers->Load();

$answers_dat a=[] ;
foreach ($poll_answers->Eachlten() as $answer)

$answers_dat a[] =[
"title =>%answer->Title(),
' vot es' =>$%answer - >Vot esCount (),

l;
pb_set _tpl _var('answers', $answers_data);

pb_set _tpl_var('polls_url', PBURL:: CurrentMdule('view));
)

Let'sincorporate a 'thank-you' view in the template to exhibit an ordered list of answers along with their respective vote
counts:

{if $m action eq "thank-you"}
{include file="block_begin.tpl"}

<div class="alert alert-success">
You voted successful|ly!
</ div>
<ul class="polls-list-container">
{foreach from$m answers itemranswer}
{$answer.title} - {$answer.votes} votes
{/foreach}
</ ul >
<div class="text-center">
View Pol | s
</ div>

{include file="bl ock_end.tpl"}
{1if}

What's Next

Please review the finalized version of visitor facing section.

Chapter 17. Finalizing Vistor -Facdng Functionality
Now, we'll culminate the visitor-oriented functionalities by refining the controller and views for the polls section.

modules/polls.php

<?php

use PB\ Common\ Redi rect ;
use PB\ Cor e\ PBURL;
use PB\ PB;

pb_on_action('thank-you', function ()

$poll = new Pol | (PB:: GET('id')->AsInt());
PB: : Show404I f Enpt y($pol |);

pb_title(' Thank You');
pb_tenplate(' polls');

$pol | _answers = new Pol | AnswersLi st ();
$pol | _answers->FilterPol | ($poll->1D());
$pol | _answer s- >Or der By Vot es(f al se);

$pol | _answer s->Load();

$answers_dat a=[];

DK

foreach ($poll_answers->Eachlten() as $answer)

$answers_dat a[] =[
"title' =>%answer->Title(),
' vot es' =>$%answer - >Vot esCount (),

I
pb_set _tpl _var('answers', $answers_data);

pb_set _tpl_var('polls_url', PBURL:: CurrentModul e('view));

pb_on_action('vote', function ()

1),

$poll = new Pol | (PB:: GET('id")->Aslnt());
PB: : Show4041 f Enpt y($pol |) ;

$sel ect ed_answer _id = PB:: POST(' answer _id')->Aslnt();
$answer = $pol | - >Answers()->CGetltemN t hl D($sel ect ed_answer _i d);
if ($answer ! == NULL)
{
$answer - >Vot e() ;
Redi r ect : : Now(PBURL: : Curr ent Modul e(' t hank-you', ['id' =>$poll->1D()]));

el se

PB: : Errors()->AddError (' Pl ease sel ect an answer');
pb_set _action('details');

pb_on_action('details', function ()

1),

$pol | =new Pol | (PB: : GET('id")->AsInt());
PB: : Show404I f Enpt y($pol |) ;

pb_title('Vote!');
pb_add_cssfile(' css/polls.css');

pb_tenpl ate(' polls');
pb_set _tpl _var('question', $poll->Title());

$answers=[];
foreach ($poll->Answers()->Eachlten() as $pol | _answer)

$answer s[] [
"id' =>$pol | _answer->1D(),
"title' =>%pol | _answer->Title(),

1
pb_set _tpl_var('answers', $answers);

pb_set _tpl_var('vote_url', PBURL::CurrentMdule('vote', ['id =>$poll->ID()]));
pb_set _tpl _var('error_nessage', PB::Errors()->GetErrorsAsString());

pb_on_action('view, function ()

pb_title('Polls');
pb_tenpl ate(' polls’

)
$pol | s=new Pol | Li st (
$pol | s->Di sabl eNoFi |
$pol | s->Li it (10);
$pol | s->Of fset (PB: : GET(' from)->AsAbsint());
$pol | s->Order Byl D(f al se);

$pol | s->Load();

)
tersBl ocker();

$pol | s_data=[];
foreach ($polls->Eachlten() as $poll)

$pol I s_data[] =[
"title =>%poll->Title(),

"vote_url'=>PBURL: : Current Modul e(' details', ['id =>$poll->1D)]),
1
}

pb_set _tpl_var('polls', $polls_data)
pb_pagi nation_init_for_list($polls);
1

themes/default/polls.tpl

{if $maction eq "view'}
{include file="bl ock_begin.tpl"}

<ul class="polls-list-container">
{foreach from$m polls itemrpol |}
{$poll.title}
{/foreach}
</ ul >

{include file="paginator.tpl"}

{include file="block_end.tpl"}
{1if}

{if $maction eq "detail s"}
{include file="block_begin.tpl"}

{if $merror_nessage neq ""}
<div class="alert alert-danger">{$m error_nessage}</div>

{1if}

<f orm nmet hod="post" acti on="{$m vote_url}">
<di v cl ass="pol | -question">{$m question}</div>

{foreach from$m answers itemranswer}
<di v cl ass="pol | -answer">
<l abel >
<input type="radi 0" name="answer_id" val ue="{$answer.id}" />
{$answer.title}
</ | abel >
</ di v>
{/foreach}

<input type="subnit" value="Vote" />
</forne

{include file="bl ock_end.tpl"}
{1if}

{if $maction eq "thank-you"}
{include file="bl ock_begin.tpl"}

<div class="alert alert-success">
You voted successfully!
</ di v>

<ul class="polls-list-container">
{foreach from$m answers itemanswer}
{$answer.title} - {$answer.votes} votes
{/foreach}

<div class="text-center">
View Polls
</ div>

{include file="paginator.tpl"}

{include file="bl ock_end.tpl"}
{1if}

Chapter 18. Completing Poll M odds | mplementation

In this chapter, we'll review and integrate the finalized version of the nodul es/ pr el oad/ pol | - nodel s. php filg,
which encapsul ates the data models and their functionalities essential for managing polls and associated answers within the
application.

<?php

use PB\ DB\ ORM PBDBLi st ;
use PB\ DB\ ORM PBDBObj ect ;

/**

* @rethod static self initSingleton($id)
* @rethod static self UsingCache($id)

* @rethod static self initNotExistent()
*/

cl ass Poll extends PBDBObj ect

{
public static function Tabl eName(): string
return 'polls';
}
public static function FieldNanmeForID(): string
{
return "id';
}
public static function FieldNameForTitle(): string
{
return 'title';
}
public function UserlID(): int
{
return $this->FieldlntValue('user_id');
}
public static function Create(string $poll _question, int $created_by_user_id): self
{
return self::CreateWthParans([
"title' =>%pol | _question,
"user _id =>$created_by_user_id,
1);
}
public function Answers(): Pol | AnswersLi st
{
$pol | _answers = new Pol | AnswersList();
$pol | _answers->FilterPol | ($this->1D());
$pol | _answer s->Or der Byl () ;
$pol | _answers->Load();
return $poll _answers;
}
protected function OnRenoveBeforeStart(): void
{
foreach ($this->Answers()->Eachlten() as $answer)
$answer - >Renove() ;
}
}

/**

* @rethod static self initSingleton($id)

* @rethod static self Usi ngCache($id)
* @rethod static self initNotExistent()

*/
cl ass Pol | Answer extends PBDBObj ect
{
public static function Tabl eName(): string
return 'poll _answers';
}
public static function FieldNameForlD(): string
{
return 'id';
}
public static function FieldNaneForTitle(): string
{
return "title';
}
public function PollID(): int
{
return $this->FieldlntValue(' poll_id);
}
public function VotesCount(): int
return $this->FieldlntValue('votes');
}
public static function Create(Poll $poll, string $answer_title): self
{
return self::CreateWthParans([
"title =>%answer _title,
"pol | _id =>$pol | ->1D(),
'votes' =>0,
1);
}
public function Vote(): void
{
$t hi s->I ncrement (' votes');
}
public function Set Answer Wt hVotes(string $new answer_title, int $new votes_count): void
$t hi s- >Updat eVal ues([
"title' =>%$new answer _title,
' vot es' =>$new_vot es_count,
1):
}
}
/**
* @ret hod Poll [|ten($index)
* @rethod Poll[] Eachltem()
* @ret hod Pol | | NULL Fetch()
* @rethod Pol I | NULL Firstltem()
* @ret hod Pol || NULL Lastlten()
* @rethod Pol || NULL GetltemA thl D($id)
*/
cl ass Pol | Li st extends PBDBLi st
{
protected function Cbjectd assNane(): string
return Poll::class;
}
public function FilterUser(int $user_id): void
$this->Set Fil terFieldlntValue(' user_id, $user_id);
}
}

/**

@ret hod Pol | Answer |t en($i ndex)

@ret hod Pol | Answer[] Eachltem()

@ret hod Pol | Answer | NULL Fet ch()

@ret hod Pol | Answer | NULL Firstltem()

@ret hod Pol | Answer | NULL Lastlten()

* @ret hod Pol | Answer | NULL GetltemN thl D($id)

E R I

*/
cl ass Pol | AnswersLi st extends PBDBLI st
{
protected function CbjectC assNane(): string
return Pol | Answer:: cl ass;
}
public function FilterPoll (int $poll _id): void
$t hi s->SetFilterFieldlntVvalue('poll_id , $poll_id);
}
public function O derByVotes(bool $asc=true): void
$thi s->OrderByFi el d(' votes', $asc);
}

Chapter 19. Embradng Easy M oduleBuildingin PushButtonCM S

Creating modules within PushButtonCM S has been showcased through this basic example, highlighting the simplicity and
efficiency of its development framework. This system is specifically crafted for rapid application development, ensuring a
minimal learning curve for project initiation.

PushButtonCM S offers alow entry threshold, allowing developers to swiftly kickstart their projects without diving deep into
complex concepts. The example presented here, though basic, covers awide array of functionalities crucial to understanding
the system's fundamentals.

The straightforward structure and intuitive design of PushButtonCM S streamline the process of building modules. This
simplicity doesn't compromise the system's capability to handle intricate functionalities. It's atestament to how asimple yet
powerful framework can empower developers to create robust applications with ease.

By providing aclear path for module creation and leveraging its inherent flexibility, PushButtonCM S encourages devel opers
to focus on crafting efficient solutions rather than grappling with convoluted technicalities. This ease of use fosters a
conducive environment for rapid prototyping and deployment, making it an ideal choice for various projects, whether small-
scale or larger in scope.

PushButtonCM S stands as a testament to the philosophy that simplicity doesn't equate to limitations; instead, it promotes
agility, creativity, and efficient devel opment, empowering developers to bring their ideas to life swiftly and effectively.

